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Abstract.  We investigate structural and dynamical properties of moderately 
polydisperse emulsions across an extended range of droplet volume fractions φ, 
encompassing fluid and glassy states up to jamming. Combining experiments 
and simulations, we show that when φ approaches the glass transition volume 

fraction gφ , dynamical heterogeneities and amorphous order arise within the 

emulsion. In particular, we find an increasing number of clusters of particles 
having five-fold symmetry (i.e. the so-called locally favoured structures, LFS) 
as φ approaches gφ , saturating to a roughly constant value in the glassy regime. 

However, contrary to previous studies, we do not observe a corresponding 
growth of medium-range crystalline order; instead, the emergence of LFS is 
decoupled from the appearance of more ordered regions in our system. We 
also find that the static correlation lengths associated with the LFS and with 
the fastest particles can be successfully related to the relaxation time of the 
system. By contrast, this does not hold for the length associated with the 
orientational order. Our study reveals the existence of a link between dynamics 
and structure close to the glass transition even in the absence of crystalline 
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precursors or crystallization. Furthermore, the quantitative agreement between 
our confocal microscopy experiments and Brownian dynamics simulations 
indicates that emulsions are and will continue to be important model systems 
for the investigation of the glass transition and beyond.

Keywords: colloidal glasses, glasses (colloidal, polymer, etc)
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Emulsions are of great practical importance in pharmaceutical, cosmetics, food, and 
agrochemical products [1]. In addition to their utility from an engineering perspective, 
these systems are gaining renewed attention in soft matter physics as model system 
for soft colloids [2–5]. Indeed, thanks to the ability of constituent droplets to deform 
without coalescing and thereby increase their surface area, emulsions can pack well 
beyond the so called random close packing or jamming limit [6–8], which represents the 
maximal volume fraction of hard-spheres when they are packed in a disordered manner. 
Crossing into and beyond random close packing, emulsions undergo a trans ition toward 
an elastic amorphous solid in which the rearrangement of droplets is not possible, the 
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viscosity diverges and bulk samples exhibit a finite elastic shear modulus [4, 5, 9–14]. 
Together with the huge eort in characterizing the jamming transition, great attention 
has been devoted to the lower density regime where emulsions behave similarly to a col-
loidal viscous fluid, displaying a transition from an ergodic fluid state to a non-ergodic 
weak solid known as the glass transition [3, 14–19].

As a general feature, when the glass transition is approached, the viscosity of a 
material sharply increases and the dynamics dramatically slow down. These phenom-
ena are accompanied by the emergence of dynamical heterogeneities in the collective 
rearrangement of particles [20–22]. Despite the presence of heterogeneous dynamics, 
structural quantities such as the radial distribution function g (r) change very little 
suggesting the absence of large spatial correlations. The connection between structure 
and dynamics close to the glass transition is a debated issue which has been discussed 
in dierent theroretical frameworks [23–26]. More recently it has been shown that it 
is possible to link the heterogeneous dynamics of particles with peculiar structural 
arrangements arising within the system on approaching the dynamic arrest [19, 27–30]. 
The underlying idea is that regions of slow particle rearrangements must be connected 
to local structures which are energetically favorable. Such stable structures are thought 
to correspond to local minima of the energy landscape in which the system remains 
trapped. This is the picture proposed by Frank [31], who has identified locally favour-
able structures (LFS) in the Lennard-Jones system as structures with icosahedral order. 
LFS maximise the density of packing and thus are energetically favoured with respect 
to the equilibrium face-centered cubic (FCC) crystal structure of the Lennard-Jones 
system. In addition, geometric frustration introduced by their five-fold symmetry is 
incompatible with long-range order; hence, the presence of LFS has been conjectured 
to have a fundamental role in the vitrification process [32].

Other numerical and experimental studies have revealed that crystalline order may 
play a key role in the vitrification process even if crystallization is avoided. In this case 
there is an underlying reference crystalline state to which a specific bond orientational 
order (BOO) is associated. Simulations and experiments [33, 34] have shown that, 
although translational order is avoided, thereby suppressing crystal formation, bond 
orientational ordering is still present, and it actually grows upon cooling, extending up 
to medium range BOO. For the case of slightly polydisperse hard-spheres [34], it was 
shown that BOO is related to local dynamics, i.e. particles belonging to arrangements 
with high orientational order are less mobile. All of these findings suggest that the 
dynamic slowing down and the increasing dynamical heterogeneities towards the glass 
transition may have some structural bases.

Despite the growing interest in the packing of soft spheres over the last decade, 
emulsions have been largely underestimated as a quantitative model system. Few 
exper imental works on emulsions have focused on the properties in the glassy and 
jammed regime under shear flow [3, 10, 11, 14], while the glassy behaviour of oil-in-
water emulsions in the absence of flow has been studied only by dynamic light scat-
tering [17]. The great advantage of emulsions is that the droplet volume fraction is 
well defined since the liquid within the droplet is incompressible even when particle 
deform. This makes them suitable candidates for a better comparison with numerical 
and theoretical descriptions both with respect to hard spheres, for which the packing 
fraction definition is often problematic [35], and to soft particles such as microgels or 
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star polymers that may deswell or interpenetrate [36–41]. Moreover solid friction and 
entanglements cannot play a role in emulsions, whereas they might in solid particulate 
or microgel dispersions.

In this work, we report an extensive study of the structural and dynamical prop-
erties of emulsions from states below the glass transition volume fraction up to 
jamming and we compare 3D fluorescent microscopy measurements with numerical 
simulations. We identify multiple signatures of the glass transition, analyzing both 
dynamical and structural quantities, highlighting a connection between the dynamic 
slowing down and growing dynamical and structural correlation lengths. This link is 
revealed by looking at the increasing population of LFS as well as of clusters of fast 
particles as the glass transition is approached. However, the relatively large poly-
dispersity of our samples, beyond the known terminal polydispersity above which a 
single-phase crystallization can occur [42, 43], dierentiates our system from previ-
ous studies, because of the absence of the growth of locally crystalline regions. Last 
but not least, we demonstrate quantitative agreement with numerical simulations, 
opening the pathway for future quantitative predictions for dierent soft repulsive 
particle systems over the entire range of concentrations from the fluid regime to the 
jammed regime.

1. Experimental methods

1.1. Sample preparation

We prepare stable uniform oil-in-water emulsions as described in [44]. We start with a  
3 : 1 mixture by weight of polydimethylsiloxane (PDMS; viscosity 15 45∼  mPa·s,  
density 1.006 g ml−1) and polyphenylmethylsiloxane (PPMS-AR200; viscosity 200 mPa·s,  
density 1.05 g ml−1) and we emulsify it in a couette shear-cell with sodium dodecyl sul-
fate (SDS) surfactant in water for stabilizing the droplets. To remove evaporable short 
molecules the PDMS oils is placed in an oven at 60 �C overnight prior to emulsification. 
Depletion sedimentation [45] is then used to fractionate the droplets by size, until the 
desired polydispersity PD 12%�  is achieved in the sample. For such polydispersity we 
find the size distribution of droplets to be close to log-normal with a mean droplet radius 
a  =  1.05 μm or a droplet diameter 2.1σ =  μm. To sterically stabilize the droplets, SDS is 
replaced by the block-copolymer surfactant Pluronic F108. In addition, formamide and 
dimethylacetamid (DMAC) are added to the solvent in order to simultaneously match 
the solute-solvent density and the refractive index at room temperature T 22 = �C.  
Finally, the fluorescent dye Nile red is added to the solution in order to obtain optical 
contrast between the droplet and the dispersion medium. Several hundred microliters 
of sample are spun down marginally above jamming with centrifugation. The latter is 
carried out at 4 °C in order to induce a slight density mismatch between the droplets 
and the solvent. The stock sample then is diluted continuously in steps of 0.5%. After 
each dilution, we put a small amount of suspension in an evaporation-proof cylindrical 
cell of diameter d  =  2 mm and heigth h  =  120 μm sealed with UV-glue to a microscope 
cover slip.

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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1.2. Image acquisition

3D High-resolution images of droplets are obtained using a laser-scanning confocal 
microscopy module, Nikon A1R, controlled by Nikon Elements software. Images are 
acquired with a X60 oil immersion objective with zoom X2. Although the dye is present 
both in the continous phase and in the dispersed oil droplets, the emission spectra are 
dierent, exhibiting emission peaks of 670 nm and 580 nm for the continuous phase and 
for the oil, respectively, when the sample is excited with a 488 nm laser. The dimension 
of the recorded images are 512 512 101× ×  pixels with a resolution of 0.21 μm/pixel in 
each direction. Droplets are reconstructed by a template based particle tracking method 
known as the sphere matching method (SMM) [46] and Voronoi radical tessellation [47] 
to identify neighbors of each particle. In our case the accuracy of the coordinates is 
roughly 20 nm in the lateral direction and 35 nm in the vertical direction. The accuracy 
of the size determined from the analysis of immobile droplets is about 20 nm. Due to 
the finite exposure time, the size of droplets extracted from the tracking algorithm is 
slightly dierent for samples having dierent volume fractions, due to motion blurring of 
droplets in the images. Since all samples are made out of the same stock suspension, we 
assume that the particle size distribution for dierent samples is the same. We proceed 

in the following way: first the particle size distribution of the system is measured at ran-

dom close packing assuming 64.2%Jφ = , which corresponds to the value found for mar-
ginally jammed polydisperse frictionless spheres with polydispersity PD 12%�  [44, 48]. 
This size distribution is fixed throughout. Next, the particle size distributions obtained 
from the SMM tracking algorithm at lower concentrations are calibrated using this ref-
erence distribution, and, in this way, the volume fraction of each sample is determined.

The fact that we can reversibly jam the system provides a well defined benchmark. 
In turn, we obtain a much better estimate for the absolute values of the packing frac-
tion as compared to hard sphere systems [35]. We estimate the absolute accuracy of 
our φ-values to be better than 0.5% with a statistical error better than 0.3%. The small 
dierence is due to the finite accuracy with respect to Jφ  [44, 48].

2. Simulation methods

To model the behaviour of dense emulsions we use a soft repulsive potential, following 
previous works [2, 14, 49–52] which have shown how the elastic and dynamic properties 
across the glass and the jamming transitions depend not only on the volume fraction φ 
but also on the strength of the repulsion. We thus model emulsions as particles inter-
acting with a harmonic potential

U r u r r1ij ij ij ij0
2( ) ( / ) ( )β σ σ= − Θ − (1)

where i,j is the index of two particles with diameter iσ and jσ  (with 0.5ij i j( )σ σ σ= + ) and 
u0 is proportional to the harmonic spring constant and is in units of k TB . The length 

unit is chosen to be the average colloid diameter ⟨ ⟩σ  and time t is in units of m u0⟨ ⟩ /σ  
(reduced units) where m is the mass of a single particle. We perform Brownian dynam-
ics (BD) simulations of N  =  2000 polydisperse particles; a velocity Verlet integrator is 

http://dx.doi.org/10.1088/1742-5468/2016/09/094003


Dynamical and structural signatures of the glass transition in emulsions

6doi:10.1088/1742-5468/2016/09/094003

J. S
tat. M

ech. (2016) 094003

used to integrate the equations of motion with a time step td 10 4= − . We follow [53] 
to model Brownian diusion by defining the probability p that a particle undergoes 
a random collision every X time-steps for each particle. By tuning p it is possible to 
obtain the desired free particle diusion coecient D k TX t m pd 1 1 20 B( / )( / / )= − . We fix 
D0  =  0.0081 in reduced units, for which the crossover from ballistic to diusive regime, 
for isolated particles, takes place at t 0.01∼ .

Using a harmonic approximation for the interaction potential is reasonable for small 

deformations of the droplets [49, 54]. Here, we consider only concentrations at or below 

jamming 64.2%J⩽φ φ =  [44] and thus deformations can be considered small and the har-
monic potential approximately applies. As discussed in a previous work [14], the value 
of u0 is set by the surface tension of the system. Indeed a 1% change in volume fraction 
above random close packing corresponds to a droplet compression r1 2.7 102 5( / )σ− = ⋅ − , 
thus as long as u0 is much larger than k T105

B  the energy cost to thermally induce a corre-
sponding shape fluctuation is �k TB . Based on these considerations, we set u 1.0 100

7= ⋅ , 
which also matches rheology data [14]7. For such values of u0, the system under study 
is hard enough to be considered almost as hard-spheres, since the droplet deformation 
due to thermal fluctuations is very small. Nonetheless, the softness of the droplets and 
the absence of friction are key properties of emulsions that allow for the preparation of 
dense and marginally jammed systems. The polydispersity of the system is described by 
a log-normal distribution with unitary mean and standard deviation equal to PD 12%=  
following the experimental probability size distribution. The total simulation time for all 

the volume fractions investigated ranges between 5.5 107⋅  and 2.4 108⋅  BD steps, corre-

sponding to t 5.5 10 , 2.4 103 4[∈ ⋅ ⋅ ] in reduced units. A recent numerical work on HS with 
polydispersity ≃12% [55] has shown that the relaxation features of the system depends 
very much on the population of small and large particles belonging to the tails of the size 
distribution. In the HS system, aging also aects fully decaying intermediate scattering 
functions (ISF) when 59%φ> , which depend not only on the observation time t but also on 
the waiting time tw, i.e. the time elapsed from the beginning of the experiment or simula-
tion. Due to polydispersity, it was found that small and large particles undergo a dynami-
cal arrest at dierent packing fractions; while large HS particles are dynamically arrested 
already at 58%φ = , small particles are still free to move in the matrix formed by the large 
particles. For our emulsions, we observe a similar behavior, finding that the system starts 

to display aging for 58.1%φ> . This is shown in figure 1(a) where the self ISF defined as 

F q t N, 1 es
N q r r t
1 1

i 0i i( ) ( / ) ( ( ) ( ))→ → →→ = ∑ =
⋅ −  is displayed at dierent waiting times for 58.1%φ =  and 

58.5%φ =  and wave vector q→ roughly corresponding to the position of the first peak of the 
structure factor S (q). Hence, for 58.1%φ>  we consider the system to be out-of-equilibrium.

3. Comparison between numerical and experimental data

Using Brownian dynamics (BD), rather than molecular dynamics (MD), in the simula-
tion method is advantageous, because BD yields more accurate microscopic dynamics 

7 Oscillatory shear measurements of our emulsions (data not shown) indicate a surface tension of 0.01–0.015 Nm−1 
and thus ∼u 20 – k T3 107

B×  [14].

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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of emulsion droplets, thereby enabling us to achieve very good quantitative agreement 
between numerical and experimental dynamical observables, such as the mean square 
displacement, over an extended dynamic range in time. The use of MD simulations 
would have only allowed us to compare the resulting transport coecients, such as the 
long-time diusion coecient D, although with better numerical eciency in terms of 
computational time. By contrast to other systems [55], the determination of the pack-
ing fraction does not require any adjustable free parameter, and we directly use the 
experimental values in the simulations. In order to improve the agreement reported 
with experimental data, we had to account in simulations for the error in the exper-
imental exposure time, which is a source of noise in the coordinates along the three axis 
in confocal microscopy measurements. In fact, the scan over a single particle takes on 
average 1s, a time in which the particle is free to explore a certain volume within the 
cage. As a consequence, the coordinates of particles extracted are aected by a noise 
that results in a suppression of the peak of the g (r) [37]. Since the short time motion 
for samples with dierent volume fraction is dierent, we would expect dierent level 
of noise on increasing φ. An estimate of how much a particle with average radius a 1∼  
μm has moved in 1 s is given by the cage size which can be approximately written as 

[56, 57] a4 1J
1 3[( / ) ]/φ φ= −ε . In addition to that, we consider the accuracy of the par-

ticle tracking. This brings an error of roughly 0.1trackδ �  pixel (with 1 pixel ≃0.2 μm) 
in the lateral direction and 0.15trackδ �  pixel in the axial directions. Basing on such 
consideration, the noise can be approximately estimated as a Gaussian distribution 

P 0, 2
track
2( )δ+ε  with zero mean and variance w 2

track
2δ= +ε . We apply such Gaussian 

noise to the three coordinates of all the particles in simulations, finding a very good 
agreement with experimental results.

4. Results

4.1. Dynamical properties close to the glass transition

4.1.1. Mean square displacement and α-relaxation We start our discussion by showing 
the dynamical properties of emulsions in experiments and simulations around the glass 
transition volume fraction. Figure 1(b) shows the comparison between the two sets of 

data for the mean square displacement r N r r t1 0i i i
2 2⟨ ⟩ ( / ) ( ) ( )→ →δ = ∑ | − | . As for most of 

molecular liquids and colloidal systems, the dynamics shows a dramatic slowing down 

on approaching gφ  and r 2⟨ ⟩δ  displays the emergence of a typical plateau associated to the 
presence of ‘cages’ in which particles remain trapped for an increasingly long time. We 
find that a simple model such as harmonic spheres quantitatively captures the dynami-
cal behaviour of emulsions in an extended time region covering more than two decades 
for a wide range of packing fractions at and below jamming. Note that to superimpose 
experimental and numerical data a shift in time has been applied to the numerical mean 
square displacement. From the long-time limit of numerical mean square displacements 

we can extract the diusion coecient using the Einstein relation D r t62⟨ ⟩/δ= . For 

experiments, we could not reach a purely diusive long-time regime, thus we estimate D 

by introducing a relaxation time Dτ , through the empirical relation r t3 12
D

2⟨ ⟩ ( / )δ τ= + ε  

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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[58] where ε is the characteristic cage size. The derivation of such expression is found in 
appendix A. The associated diusion coecient is defined as D 3 2

D/τ= ε . The resulting 
numerical and experimental D and Dτ  are shown in figure 2. The diusion coecient is 
represented in the figure 2(a), showing no dierence on the way it has been calculated 
(Einstein or empirical relation). We also notice that the results are in good agreement 
with previous numerical data for a HS sphere system with the same polydispersity [55] 
that we plot together with results from emulsions, to show that our system behaves 

almost as HS. By performing a power-law fit D gφ φ∝ | − |γ we find that 58.9%gφ =  and 

2.29γ =  for experiments, while 59.1%gφ =  and 2.12γ =  for simulations, which are both 

in good agreement with power-law fits of [55]. However, dierently from HS simulations, 

Figure 1. (a) Self intermediate scattering function (ISF) for two droplet volume 
fractions φ = 58.1% and φ = 58.5% evaluated at dierent waiting times tw and 
σ �q 7.2. While for φ = 58.1% no aging eects are observed, for φ = 58.5% an 

increase of the relaxation time of the self ISF as a function of tw is not negligible. 
Dashed lines are guides to the eye. (b) Normalized mean square displacements. 
Droplet volume fractions range from 53.5% to 60.4%. Symbols are data from 
confocal microscopy measurements; lines are results from Brownian dynamics 
simulations. Note that the simulation curves have been shifted on the time-axis by 
the same arbitrary factor to match the experimental microscopic timescale.

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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we do not observe a deviation from a power-law decay in our numerical study; this is 
because Brownian dynamics is slower than molecular dynamics and does not allow to 
probe, within the same simulation time, the time scales that can be explored with MD. 

Hence, the values of φ that we consider are much further away from gφ , as compared to 

[55], for any deviation to be observed. The relaxation time Dτ  is shown in figure 2(b); a 

power-law fit of Dτ  as a function of φ, gives similar results for gφ  and γ. A slightly higher 

value of 61.6%gφ �  is obtained if data are instead interpolated with the empirical Vogel–
Fulcher–Tammann (VFT) expression

Aexp .g gD ( / )τ φ φ φ= | − | (2)

The small dierence between the results of the two interpolations is again a conse-

quence of the fact that both numerical and experimental results are too far from gφ  to 
observe a dierence between the interpolating relations and discern which is the the 
best between the two. The two fits (power law and exponential) for the exper imental 
data set are shown also in the figure. Finally we want to point out the dierence 
between the numerical Dτ  and the α-relaxation time τα extracted from the self ISF from 
simulations which are both shown in the same panel (dashed and dash-dotted lines); we 
find that the two times can be superimposed for a wide range of packing fractions, but 
start to show a decoupling on approaching the glass transition, a signature of the the 

violation of the Stokes-Einstein relation occurring between D and τα close to gφ .

4.1.2. Dynamical heterogeneity One common way to characterize dynamic heteroge-
neities is to look for deviations of the particle displacements compared to free diusion 
[20, 59]. For a random diusion process the displacement distribution P x t,( )∆  at a 
given time t is a Gaussian with zero mean and a variance equal to the mean square 
displacement. Collective and correlated displacements lead to dynamic heterogeneities 
and deviations from the Gaussian distribution as shown in figure 3(a). Such deviations 
can be quantified by a non-Gaussian parameter defined as:

〈 〉
〈 〉

α
δ
δ

= −
r

r

3

5
1.2

4

2 2 (3)

In figure 3(b) we plot 2α  as a function of the particle mean square displacement. 
Initially the values are nearly zero in the liquid but acquire appreciable values when 
approaching the glass transition volume fraction. In this regime 2α  displays a pro-
nounced peak. This is because the movement of particles results from the combina-
tion of the intra-cage and inter-cage dynamics. At short time scales, the displacement 
is mostly due to intra-cage dynamics and the distribution is nearly Gaussian 02α ∼ . 
Collective rearrangements are associated with cage breaking in the glass. Thus the peak 
in 2α  is related to the size of the cage. As the cage size gets compressed the maximum 

of 2α  is shifted towards smaller values of r 2⟨ ⟩δ . At long times, or large values of r 2⟨ ⟩δ , 
the displacements are due to a sum of many random cage breaking processes and the 
distribution becomes Gaussian again.

Another interesting way to analyze the collective particle motion is to look specifically 
at a of particles that dier from the Gaussian. Following [20] we define the popula-
tion of fast particles as the 5% most mobile particles within a certain time interval, 
calculated with respect to t  =  0. The ratio of 5% is chosen based on the fact that the 
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percentage of particles whose displacement deviates from a Gaussian distribution is 
roughly 5% (figure 3(a)) [59, 60]. Figure 4 shows several snapshots of fast particles that 
are spatially correlated. The appearance of spatial correlations is direct evidence for 
dynamic heterogeneities close to the glass transition [20, 61]. We define clusters of i 
particles from set of fast neighbouring particles identified via the Voronoi radical tesse-
lation. The mean cluster size of fast particles is defined by taking the sum over clusters 
of all sizes and averaging over several configurations. The values for Nc⟨ ⟩ we find depend 

both on concentration and on time. The latter is shown in figure 4. Especially close to 

gφ , Nc⟨ ⟩ displays a pronounced maximum as a function of time. Moreover, this maximum 

is located close to the relaxation time Dτ . Away from gφ  the peak is not pronounced or 
even absent. This suggests that, on approaching gφ , collective rearrangements play a 

Figure 2. (a) Diusion coecient D as a function of the volume fraction φ for 
experiments (open squares) and simulations (open circles). Open diamonds are 
numerical results for HS particles with polydispersity =PD 12% from [55]. Note 
that numerical D values have been shifted by an arbitrary factor to match the 
experimental results for emulsions. The dashed line is the power-law fit of the 

experimental data set which gives φ = 58.9%g  and γ = 2.29. The same interpolation 
for numerical data gives φ = 59.1%g  and γ = 2.12; (b) relaxation time τD extracted 

from the mean square displacement for both experiments (open squares) and 
simulations (open circles). A power-law fit of the two data sets gives, respectively, 

φ = 58.9%g  and γ = 2.1 for experiments and φ = 59.1%g  and γ = 2.1 for simulations. 
By interpolating experimental data with the VFT relation we obtain φ = 61.6%g . 

The two interpolating lines for experimental data are shown in the figure (dashed 
lines). For comparison we also show the relaxation time τα extracted from the 
numerical self ISF (open triangles). As in the left panel, numerical data have 
been shifted by an arbitrary factor. We find that τα starts to decouple from the 
numerical τD on approaching the glass transition packing fraction.

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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fractions, we can plot the concentration dependence of the cluster size Nc max⟨ ⟩  (In the 
absence of a clear maximum we select an arbitrary time). As shown in figures 4(b) and 
(c) the cluster size increases on approaching the glass transition and then decreases 

above gφ . This behaviour is observed both for simulations and experiments as shown in 
figure 4(a). We note that due to the polydispersity of the system small particles tend to 
be more mobile than larger particles. In connection to this it is worthwhile mentioning 
that the average size of the fast particle population is smaller, e.g. for 59.3%φ = , the 
mean radius of fast particles is around 0.92 μm, while for all particles it is 1.05 μm.

4.2. Structural properties close to the glass transition

4.2.1. Radial distribution function Figure 5(a) shows the radial distribution func-
tions of the system for three dierent packing fractions taken from experiments 

Figure 3. Experimental measurements of non-Gaussian step-size distributions and 

dynamical heterogeneities for φ near and above φg. (a) Distribution of droplet 
displacements ∆x obtained from confocal microscopy at a volume fraction of 
φ = 60.3% and time t  =  2160 s. Dashed line: best fit of the peak center to a Gaussian 
distribution; solid line: best fit of the tails to a stretched exponential distribution. 
(b) Non-Gaussian parameter α2 as a function of the dimensionless mean square 
displacement for volume fractions from 52.8% to 60.3%.

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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and simulations. The agreement is striking in the whole investigated range of pack-
ing fractions. We thus analyze the concentration dependence of the minima and 
maxima of the g (r) across the glass transition. The results are shown in figure 5(b) 
for experiments and simulations. For the latter, the structural properties above gφ  

have been obtained both by averaging over a single run (as for the experimental 
data) and by averaging over 100 independent runs at a fixed waiting time t 2500w = , 
to eliminate the eects of aging in the sample. The two sets of data are displayed 
with dierent colours in figure 5(b), showing that the results are similar. The main 
interesting feature that we find is the non-monotonic behaviour of the peaks of 
the g (r). While the first peak seems to be barely influenced by the presence of the 

glass transitions, the second and the third peak together with the first three dips of 

the g (r) display a clear change at gφ . In fact we find that their amplitudes increase 

(peaks) or decrease (dips) on approaching the glass trans ition, saturating above gφ  

meaning that the long-range structure remains unchanged by further compressing 

the emulsion. Dierently, the behaviour of the first peak shows some changes within 

the first shell even beyond gφ  and seems to saturate only close to the jamming vol-
ume fraction [44]. This is consistent with the behaviour found in other soft particles 

Figure 4. (a) Identification of fast particles in the microscopy experiments at 
dierent volume fractions: from left to right φ = 54.6%, φ = 58.7% and φ = 60.4% 
respectively for t  =  270 s, 4320 s, 8640 s. (b) Mean cluster size from experiments 
as a function of time for dierent samples with volume fraction of 54.6%, 58.7% 
and 60.4%. Lines are guides to the eye. (c) Mean cluster size of fast particles as 
a function of the volume fraction φ. Closed squares: experiments; open circles: 
simulations.

http://dx.doi.org/10.1088/1742-5468/2016/09/094003


Dynamical and structural signatures of the glass transition in emulsions

13doi:10.1088/1742-5468/2016/09/094003

J. S
tat. M

ech. (2016) 094003

[62, 63] such as PNIPAM particles [64] and granular materials [65] close to jam-
ming. In those cases a maximum in the first peak of the g (r) has been predicted 
and experimentally observed as a structural signature of the jamming transition  
[64, 66, 67]. Our data is consistent with these previous studies. However, due to the 
onset of coalescence under significant droplet compression we cannot access deeply 
jammed samples ( 66%φ> ). The limited stability under compression is a trade-o 
when optimizing the emulsion systems for buoancy and index matching conditions. 
At and below Jφ  (∼64.2%) we do not observe coalescence after more than one year.

The increase of the peaks and the decrease of all the dips of the g (r) is related to 
the fact that, on increasing the volume fraction, particles tends to organize in better 
defined shells displaying a kind of ‘amorphous order’ [24] that needs to be quantified. 
This picture can be captured by looking at those parameters that probe the local struc-
ture of the system. One parameter is the average number of neighbors.

There are dierent ways to determine the number of nearest neighbours. One possi-
bility is to define a cut-o distance, such as the first minimum of the g (r), rmin, and count 

all the neighbours within that distance from a specific particle N r g r4
r

coord
0

2min ( )∫πρ= . 

In that case the number of neighbours Ncoord is called coordination number. However, 
such a definition depends on the value of the cut-o that changes in dependence of the 
volume fraction. Here we implement a dierent approach. We consider two particles 
as neighbours if they share a wall of a Voronoi cell. This way, the result is unique 
and parameter free since it is based only on geometrical considerations. The Voronoi 
tessellation allows not only to count the number of neighbours but also to determine 

Figure 5. (a) Radial distribution function g (r) of soft spheres for three volume 
fractions φ. Symbols denote experimental data for emulsions from confocal 
microscopy measurements, lines denote results from Brownian dynamics 
simulations. (b) Peak (left panel) and dip (right panel) amplitudes of g (r) versus 
the volume fraction. Experiments: full squares. Simulations: open symbols. Circles 
show results obtained by averaging over a single run; diamonds show results 
obtained by averaging over 100 independent runs at time =t 2500w .
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geometric properties of the cells as we will show later. The trends found in simulations 
and experiment are exactly the same and, except for a small shift, the data sets for N 
follow the same trend as shown in figure 6(a).

The concentration dependence of the average number of neighbours N shown in 

figure 6(a), reveals a clear change around gφ . When approaching gφ  the number of 
neighbours decreases. Above gφ  the average number of neighbours saturates close to 

the value predicted for random close packing N  =  14.3 [44]. These observations can be 
rationalized by considering the evolution of the dips and peaks in the radial distribution 

function. Below gφ  the boundary between the first and the second neighbouring shell is 
shallow and the average number of neighbours found is thus larger. As the volume frac-
tion increases, the two shells become well separated (the first dip of the g (r) decreases) 
and, as a consequence, the average number of neighbours decreases. For gφ φ>  the first 
dip and all higher order dips and peaks saturate which is consistent with a constant 
number of neighbours in this regime. For comparison, the coordination number Ncoord, 

extracted from the simulation data, is found to remain almost constant for gφ φ<  and 
sharply decreases to a smaller value above the transition.

4.2.2. Isoperimetric quotient The isoperimetric quotient IQ [68] is an interesting 
measure that describes the similarity of a Voronoi cell to a sphere, and as such it is 

sensitive to shape changes of the cells. For an individual particle i, IQ V S36i i i
2 3/π=  

where Vi and Si are the volume and the surface area of the Voronoi cell of particle i. 
IQi is dependent on the configurations of the nearest neighbors, including the orienta-
tion and separation. With IQ we denote the average of IQi over all the particles. The 
evolution of IQ as a function of the volume fraction φ is shown in figure 6(b). We 

find that the IQ param eter increases up to gφ  indicating that the particles pack more 

homogeneously and thus tend to form more spherical Voronoi cells. Once the glass 
transition is approached, the packing geometry cannot be improved any further since 
an ecient particle rearrangement process is lacking. The saturation of N and IQ in 
the glass clearly shows that the geometrically configurations are frozen in and the only 
remaining process is the compression of the preformed cages until random close pack-
ing or jamming is reached at φ φ→ J.

4.2.3. Orientational correlation length Previous studies have suggested that dynami-
cal heterogeneities are related to the emergence of a medium range crystalline order 
[27, 29, 34] in weakly polydisperse systems highlighted by a growing bond-orientational 
correlation length. Although such correlation has been found to grow in a ‘critical-
like fashion’, i.e. can be well fitted with some diverging law, the correlation lengths 
observed are typically limited to few particle diameters only. To investigate the pres-
ence of crystalline ordering in our moderately polydisperse emulsions, we use the bond 
orientational order parameters (BOO) which provide a powerful measure of the local 
and extended orientational symmetries in dense liquids and glasses [69]. The BOO 
analysis focuses on bonds joining a particle and its neighbors. Bonds are defined as the 
lines that link together the centers of a particle and its nearest neighbors determined 
by Voronoi radical tessellation. We define the BOO l-fold symmetry of a particle k as 
the 2l  +  1 vector:

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
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where Nk is the number of bonds of particle k, Y r r,lm kj kj( ( ) ( ))→ →Θ Φ  is the spherical har-
monics of degree l and order m associated to each bond and rkj( )→Θ  and rkj( )→Φ  are polar 
angles of the corresponding bond measured with respect to some reference direction. 
Following the work of Lechner and Dellago [70] we employ the BOO coarse-grained 
over the neighbours, which increases the accuracy of the type of medium-range crystal-
line order (e.g. FCC, HCP or BCC type):
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Figure 6. Analysis of the Voronoi cell and the number of neighbors: (a) average 
number of neighbors N and (b) isoperimetric quotient IQ as a function of the 
droplet volume fraction φ. Experiments: full squares. Simulations: open symbols. 
Circles are the result of a single run while diamonds are obtained by averaging over 
100 independent runs at =t 2500w . Inset in (a): coordination number Ncoord from 
simulation data. Up triangles are the result of a single run while down triangles are 
obtained by averaging over 100 independent runs at =t 2500w .
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and where Nk
0 is the number of nearest neighbors of particle k including particle k itself. 

We first evaluate the behaviour of Qk
6 and Qk

4 which allow us to distinguish between 

cubic and hexagonal medium-range crystalline order. The results are shown for experi-

ments and simulations respectively in figures 7(a) and (b). The correlation map of Qk
4 

and Qk
6 reveals that, over the whole investigated range, only liquid-like structures are 

detected. This is due to polydispersity of our sample, which largely exceeds the known 
terminal polydispersity for single-phase crystallization in hard spheres [42, 43, 71]. So 
far, only experimental results for weakly polydisperse hard spheres (with polydispersity 
around 6%) have been reported, in which a medium-range crystalline order of FCC 
type was observed. However in our system, the reference crystal phase is not a simple 

Figure 7. Correlation map of bond orientational order (BOO) parameters Qk
4 and 

Qk
6 at two volume fractions. The figure highlights the regions in which the order is 

related to three types of crystals commonly seen in colloidal system: FCC, BCC 
and HCP. (a) Experimental values for φ = 53.5% and φ = 58.1%. (b) Simulations 
for φ = 53.5% and φ = 58.1% (obtained analysing 100 independent configurations 
at =t 2500w ).
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lattice since particles should fractionate into dierent solids [42]. As a consequence also 
the BOO parameter does not reveal a clear tendency to organise in a specific crystal 
structure. Hence polydispersity in our case completely suppresses the formation of any 
crystal-like order even at the local scale.

4.3. Locally favoured structures

Locally favoured structures (LFS) are energetically favoured and as a consequence 
they should be long-lived in the system. LFS thus can be identified in the system 
by looking at the lifetime of the neighbours around a given particle. To this end we 
define a stable particle (i.e. by this, here, we mean droplet) i as the one that within 
a certain time interval t∆  maintains the same neighbours nij. The latter are defined 
as before via the Voronoi radical tessellation. In figure 8(a) we plot for dierent vol-

ume fractions the typical stable particle survival rate as a function of time defined as 

N N n t n t t N ti j
ij ij

stable/ ⟨ ( ) ( )⟩/ ( )= ∑ +∆< , where N is the total number of neighbours [72, 

73]. We expect that, for a fixed t∆ , on increasing φ the number of stable particles 
will increase since cage rearrangements become more dicult. For our analysis we fix 

t 2500∆ =  in reduced units.
We first notice by looking at figure 8(b) that the number of neighbours of stable 

particles is strongly correlated with a high values of the isoperimetric quotient: this 
suggests that stable particles belong to a peculiar structure with a given symmetry. 

Figure 8. Decay of stable particle configurations for ∆ =t 2500 in reduced units. 
(a) Simulation data showing the fraction of stable particles as a function of time 
for several volume fractions. (b) Map extracted from simulations for the number of 
neighbors N versus the isoperimetric quotient IQ for all particles (black dots) and 
for stable particles (open circles).
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This is confirmed in figures 9 where the distribution of the number of neighbours is 
shown both for stable particles and for all particles. The comparison between the two 
distributions shows that most stable particles have exactly 12 neighbours both in simu-
lations and in experiments, which is consistent with the idea that stable particles may 
form icosahedral structures. To verify this hypothesis we select stable particles with 
12 neighbours and we perform a topological cluster classification (TCC) [28, 74] that 
allows to identify clusters that are topologically equivalent to certain reference clusters. 
The inset in figure 9(a) shows the bond-order diagrams of the N  =  12 particle clusters 
both for experiments and simulations. The ‘heat style’ patterns stands for the prob-
abilities of finding a neighbor in that direction. We start by considering that we are 
looking from the top of a icosahedral-structure with the central particle in the center 
of the figure. The central spot shows the probability of finding the top neighbor. The 
first five-folded spots show the probability of finding the upper layer of five neighbors. 
The second five-folded spots shows the lower layer. The bottom neighbor is not shown. 
Typical spatial icosahedral configurations of N  =  12 clusters for dierent volume frac-
tions are shown in figure 10(a).

The population of such structures is increasing when approaching some critical 
volume fraction around 60%φ∼  as shown in figure 10(b). Here we plot the fraction 

of the population of icosahedral centers as the volume fraction crosses gφ . In parallel 

Figure 9. Distribution of the number of neighbors for ∆ =t 2500 in reduced 
units. (a) Stable particles, data averaged over φ< <54.6% 60.4%. Experiments: 
bars; simulations: circles. (b) All particles at φ = 58.1%. Experiments: blue bars; 
simulations: red circles. Inset: bond-order diagram of N  =  12 particle clusters 
identified, as described in the text and figure 9. Left: experiments. Right: 
simulations.
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the average size of connected clusters formed by icosahedral structures accordingly 
increases as shown in figure 10(c). Here the cluster size Nc is defined by considering 
all particles which are part of icosahedral structures (both centers and neighbors) 
and thus for an unconnected, isolated cluster Nc/13  =  1. Therefore Nc/13 shown in 
figure 10(c) describes the cluster size normalized by a single icosahedral structure. 
Above the glass transition, both the overall number and the size of icosahedral 
domains decreases again.

Finally in figure 11 we consider correlations between the BOO parameter Q6 and 
another order parameter called w6, which is defined as

Figure 10. (a) Visualization of typical LFS for dierent volume fractions 
(simulations). (b) Number of icosahedral centers over the total number of particles. 
(c) Mean cluster size of icosahedral structures. Experiments: closed squares; 
simulations: open circles. Solid lines are guides to the eye.
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An increase of w6 has been observed in polydisperse HS particles [34] together with the 
increase of crystalline order identified by a growth of the parameter Q6. In our case, we 
do not observe an increase of Q6, due to the higher polydispersity. Hence, contrary to 
what found in previous works on hard-spheres [34], we observe that crystalline order 
remains modest while icosahedral order grows when approaching the glass transition. 
We now need to understand if such growth is somehow related to the dynamic slowing 

down of the system close to gφ

4.4. Link between structure and dynamics

In the previous sections, we presented evidence of both dynamical and structural sig-
natures of the glass transition. In order to establish a link between dynamics and 
structure, it is worth analysing the evolution of some structural features as a function 

Figure 11. Correlation map of bond orientational order parameters w6 and Qk
6 

at two volume fractions. The figure highlights the regions in which the order 
is related to icosahedral structures. (a) Experimental values for φ = 53.5% and 
φ = 58.1%. (b) Simulations for φ = 53.5% and φ = 58.1% (obtained analysing 100 
independent configurations at tw  =  2500).
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of time. For instance we can characterize the structural and dynamical heterogeneities 
discussed above by some corresponding correlation lengths and search for a connection 
between them. To this end we estimate the correlation length associated to clusters 
of fast particles and to the icosahedral structures, respectively using the following 

relations: Ncfast
1 3⟨ ⟩/ξ ∝  and Nico ico

1 3⟨ ⟩/ξ ∝ . In addition we evaluate the spatial correlation 

length 6ξ  with fold-symmetry l  =  6 of the BOO, which can be extracted from the spatial 
correlation function

( ) ( ) ( ) / ( )∑π
ρ=

=−

∗g r Q Q r r
4

13
0 ,

m

m m6
6

6

6 6 (8)

via the Ornstein–Zernike expression g exp
r

r
6

1

6

( )∝ −
ξ

 . In equation (8), r( )ρ  is the radial 

density function. The growing orientational correlation length can be characterized by 
a power-law function that diverges at the ideal glass transition 0φ  [75]

.6 0 0
2 3[( )/ ] /ξ ξ φ φ φ= − −

 (9)

As suggested previously by Tanaka and coworkers [29] we can express the relaxation 
time Dτ  in terms of the empirical Vogel–Fulcher–Tammann (VFT) expression, equa-
tion (2) and 6ξ  can be fitted with equation (9). Combining both, an analytic relation 
between Dτ  and 6ξ  can be derived:

( ) /τ ξ∝log .D 6
3 2

 (10)

It is a reasonable assumption that also the other two structural correlation lengths 
can be described by a critical divergence analogue to equation (9) and hence we expect 
them to have a similar dependence on Dτ . In figures 12(a)–(c) we verify the suggested 
scaling between Dτ  and the three structural correlations both for experiments and simu-

lations. For ico
3 2/ξ  and fast

3 2/ξ  a linear relationship with log D( )τ  is clearly confirmed. This 

shows that indeed the dynamics is strongly correlated with the appearance of icosahe-
dral structures and clusters of fast particles. However, for 6ξ  such a connection is less 
evident. This in turn confirms that the crystalline bond orientational ordering does not 
play an important role in the dynamic slowing down of the system on approaching the 
glass transition.

In our investigation, the growth of the correlation lengths is found to be much 
smaller than the increase of the relaxation time. A recent work on mixtures of hard-
sphers has pointed out that the dynamic correlation length extracted from the overlap 
function is always decoupled from the point-to-set correlation length, which represents 
an upper bound for the structural correlation lengths considered here [76]. Such results 
question the existence of a one-to-one causality relation between the growth of specific 
structures and the dynamical slowing down of the system close to the trans ition. Such 
correspondence has been also investigated with dierent tools coming from informa-
tion theory [77] that confirm a connection between LFS and mobility, although such 
correlation turned out to be weak. Hence, although our results suggest a link between 
dynamical slowing down and local structural correlations even in the absence of any 
crystal-like ordering, the exact mechanisms connecting the growing static correlation 
lengths to the dynamic slowing down still remain challenging questions.
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In summary, we have presented a comprehensive study of the glass transition in emul-
sions that have moderate polydispersity. We have performed 3D confocal microscopy 
measurements over a range of volume fractions in order to sample the system below 

and well above gφ  up to jamming. The experimental study of a system in such an 
extended φ region, crossing the glass transition and even reaching marginal jamming 
conditions has been previously attempted quite rarely. To obtain more detailed insights 
and to verify and benchmark our observations, we have compared our experimental 
results with a comprehensive set of Brownian dynamics simulations, finding remark-
able agreement in all studied structural and dynamical properties. From this, we have 
demonstrated that uniform emulsions are excellent model systems for the study of the 
glass transition in soft colloidal systems.

Figure 12. Natural logarithm of the α-relaxation time Dτ  plotted versus three 
dierent spatial correlation lengths. Experiments: closed squares; simulations: 

open circles. (a) /ξico
3 2—average size of icosahedral clusters Nico; (b) /ξfast

3 2—average 

size of the fast particle clusters Nc and (c) /ξ6
3 2 correlation length derived the bond 

orientational order parameter Q6. Lines are guides to the eye.

http://dx.doi.org/10.1088/1742-5468/2016/09/094003


Dynamical and structural signatures of the glass transition in emulsions

23doi:10.1088/1742-5468/2016/09/094003

J. S
tat. M

ech. (2016) 094003

In good agreement with previous work on hard spheres, we have observed that 

the dynamical slowing down on approaching gφ  is characterized by an increase of the 
relaxation time and the appearance of spatial and dynamical heterogeneities. The latter 
have been identified by the presence of fast and stable droplets that are spatially cor-
related. Fast droplets tend to form clusters whose size depend, not only on the distance 

from gφ , but also on time scale considered. A close link between the maximum cluster 
size and the relaxation time Dτ  was observed. This suggests that fast droplets play an 
important role in the structural relaxation of the system. Analogously, mechanically 
stable droplets arrange in long-living clusters that have peculiar geometries. By per-
forming topological cluster classification analysis we have shown that most of these 
clusters are icosahedra. Moreover, their population also increases on approaching the 
glass transition volume fraction, approximately saturating in the glassy region. The 
thorough investigation of these local and average properties at volume fractions below 

and above gφ  allowed us to follow the behaviour of structural and dynamical properties 
over a wide range, in- and out-of-equilibrium, finding that their all relevant parameters 

show a peak/dip or saturate at a maximum/minimum at gφ . We have also investi-
gated whether the presence of a crystalline order exists and can be linked to the other 
structural signatures. Contrary to previous investigations on weakly polydisperse hard 
spheres, in our emulsion, which has a moderate polydispersity of about 12%, the BOO 
parameters Q6 and Q4 do not increase either on approaching the transition or even 

above gφ ; so, we do not observe signatures for the onset of crystallization or of locally 
ordered crystal-like regions. Thus, we have been able to establish a clear link between 
growing structural correlation lengths and relaxation times, thereby confirming the 
existence of simultaneous structural and dynamical signatures of the glass transition 
even in the absence of the tendency to crystallize. Our results thus generalize the pic-
ture of heterogeneities occurring at the glass transition to the experimentally relevant 
case of polydisperse colloids and provide evidence that emulsions are a particularly 
advantageous model system for testing numerical and theoretical predictions.
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Appendix

The expression for the mean square displacement can be obtained assuming that the 
movement of particles in one direction is composed of two types of motions: rattling 
within the cage, and an inter-cage motion, such as hopping between dierent cages. 
Thus, the total displacement can be considered as the sum of the inside cage term c 
and an escape term related to the cage rearrangement h: x c hδ = + . We assume here 
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that the two events are uncorrelated, therefore the 1D mean square displacement is 

x c h2 2 2⟨ ⟩ ⟨ ⟩ ⟨ ⟩δ = + . It is reasonable to assume that the probability of finding a par-
ticle having distance c from the center of the cage follows a Gaussian distribution 

P c N 0, 2( ) ( )= ε  with variance equal to the square of the cage size, from which fol-

lows that c2 2⟨ ⟩ = ε . Analogously, the escape distance follows a Gaussian distribution 
P h N 0, 2( ) ( )ζ=  where ζ is the characteristic cage-cage hopping size. Assuming that 

cage rearrangement is an independent event then the distribution of the number of 

cage rearrangement events k follows the Poisson distribution: P k e k !k( ) /λ= λ−  where 

t /λ τ=  and τ is the lifetime of the cage. It follows that h e k h!k
k

k
2

1
2⟨ ⟩ /λ= ∑ λ

=
∞ − , where 

hk is the expected displacement after k cage rearrangements and, again, it follows a 

Gaussian distribution with zero mean and variance k 2ζ . Then h kk
2 2⟨ ⟩ ζ= , and h2 2⟨ ⟩ λζ= . 

Following the previous considerations, we can write the 3D mean square displacement 

as 〈 〉 〈 〉 [ ( / ) ] ( / )δ δ η τ τ= = + = +ε εr x t t3 3 1 3 12 2 2
D

2 with 2 2/η ζ= ε . Note that we have 
defined the relaxation time of the system as D ( / )τ τ η=  and /τε3 2

D is by definition six 
times the diusion coecient of the system. By interpolating the mean square displace-
ments with the expression derived above, we are able to extract D and τD at several 
packing fractions φ.

References

  [1]  Petsev D N 2004 Emulsions: Structure, Stability and Interactions: Structure, Stability and Interactions vol 
4 (London: Academic)

  [2]  Vlassopoulos D and Cloitre M 2014 Tunable rheology of dense soft deformable colloids Curr. Opin. Colloid 
Interface Sci. 19 561–74

  [3]  Goyon J, Colin A, Ovarlez G, Ajdari A and Bocquet L 2008 Spatial cooperativity in soft glassy flows Nature 
454 84–7

  [4]  Jorjadze I, Pontani L-L and Brujic J 2013 Microscopic approach to the nonlinear elasticity of compressed 
emulsions Phys. Rev. Lett. 110 048302

  [5]  Scheold F, Wilking J N, Haberko J, Cardinaux F and Mason T G 2014 The jamming elasticity of emulsions 
stabilized by ionic surfactants Soft Matter 10 5040–4

  [6]  Torquato S, Truskett T M and Debenedetti P G 2000 Is random close packing of spheres well defined? Phys. 
Rev. Lett. 84 2064

  [7]  Liu A J and Nagel S R 2010 The jamming transition and the marginally jammed solid Annu. Rev. Condens. 
Matter Phys. 1 347–69

  [8]  Mizuno H, Silbert L E and Sperl M 2016 Spatial distributions of local elastic moduli near the jamming 
transition Phys. Rev. Lett. 116 068302

  [9]  Mewis J and Wagner N J 2012 Colloidal Suspension Rheology (Cambridge: Cambridge University Press)
 [10]  Mason T G, Bibette J and Weitz D A 1995 Elasticity of compressed emulsions Phys. Rev. Lett. 75 2051
 [11]  Mason T G, Lacasse M-D, Grest G S, Levine D, Bibette J and Weitz D A 1997 Osmotic pressure and 

viscoelastic shear moduli of concentrated emulsions Phys. Rev. E 56 3150
 [12]  Jop P, Mansard V, Chaudhuri P, Bocquet L and Colin A 2012 Microscale rheology of a soft glassy material 

close to yielding Phys. Rev. Lett. 108 148301
 [13]  Paredes J, Michels M A J and Bonn D 2013 Rheology across the zero-temperature jamming transition Phys. 

Rev. Lett. 111 015701
 [14]  Scheold F, Cardinaux F and Mason T G 2013 Linear and nonlinear rheology of dense emulsions across the 

glass and the jamming regimes J. Phys.: Condens. Matter 25 502101
 [15]  Crassous J J, Siebenbürger M, Ballau M, Drechsler M, Henrich O and Fuchs M 2006 Thermosensitive  

core-shell particles as model systems for studying the flow behavior of concentrated colloidal dispersions  
J. Chem. Phys. 125 204906

 [16]  Mason T G, Gang H and Weitz D A 1997 Diusing wave spectroscopy measurements of viscoelasticity of 
complex fluids J. Opt. Soc. Am. A 14 139–49

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
http://dx.doi.org/10.1016/j.cocis.2014.09.007
http://dx.doi.org/10.1016/j.cocis.2014.09.007
http://dx.doi.org/10.1016/j.cocis.2014.09.007
http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1038/nature07026
http://dx.doi.org/10.1103/PhysRevLett.110.048302
http://dx.doi.org/10.1103/PhysRevLett.110.048302
http://dx.doi.org/10.1039/c4sm00389f
http://dx.doi.org/10.1039/c4sm00389f
http://dx.doi.org/10.1039/c4sm00389f
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1103/PhysRevLett.84.2064
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1146/annurev-conmatphys-070909-104045
http://dx.doi.org/10.1103/PhysRevLett.116.068302
http://dx.doi.org/10.1103/PhysRevLett.116.068302
http://dx.doi.org/10.1103/PhysRevLett.75.2051
http://dx.doi.org/10.1103/PhysRevLett.75.2051
http://dx.doi.org/10.1103/PhysRevE.56.3150
http://dx.doi.org/10.1103/PhysRevE.56.3150
http://dx.doi.org/10.1103/PhysRevLett.108.148301
http://dx.doi.org/10.1103/PhysRevLett.108.148301
http://dx.doi.org/10.1103/PhysRevLett.111.015701
http://dx.doi.org/10.1103/PhysRevLett.111.015701
http://dx.doi.org/10.1088/0953-8984/25/50/502101
http://dx.doi.org/10.1088/0953-8984/25/50/502101
http://dx.doi.org/10.1063/1.2374886
http://dx.doi.org/10.1063/1.2374886
http://dx.doi.org/10.1364/JOSAA.14.000139
http://dx.doi.org/10.1364/JOSAA.14.000139
http://dx.doi.org/10.1364/JOSAA.14.000139


Dynamical and structural signatures of the glass transition in emulsions

25doi:10.1088/1742-5468/2016/09/094003

J. S
tat. M

ech. (2016) 094003

 [17]  Gang H, Krall A H, Cummins H Z and Weitz D A 1999 Emulsion glasses: a dynamic light-scattering study 
Phys. Rev. E 59 715–21

 [18]  Mason T G and Scheold F 2014 Crossover between entropic and interfacial elasticity and osmotic pressure 
in uniform disordered emulsions Soft Matter 10 7109–16

 [19]  Golde S, Palberg T and Schöpe H J 2016 Correlation between dynamical and structural heterogeneities in 
colloidal hard-sphere suspensions Nat. Phys. 12 712

 [20]  Weeks E R, Crocker J C, Levitt A C, Schofield A and Weitz D A 2000 Three-dimensional direct imaging of 
structural relaxation near the colloidal glass transition Science 287 627–31

 [21]  Berthier L, Biroli G, Bouchaud J P, Cipelletti L and van Saarloos W 2011 Dynamical Heterogeneities in 
Glasses, Colloids, and Granular Media (Oxford: Oxford University Press)

 [22]  Zhao K and Mason T G 2015 Shape-designed frustration by local polymorphism in a near-equilibrium 
colloidal glass Proc. Natl Acad. Sci. 112 12063–8

 [23]  Kirkpatrick T R, Thirumalai D and Wolynes P G 1989 Scaling concepts for the dynamics of viscous liquids 
near an ideal glassy state Phys. Rev. A 40 1045

 [24]  Biroli G, Bouchaud J-P, Cavagna A, Grigera T S and Verrocchio P 2008 Thermodynamic signature of 
growing amorphous order in glass-forming liquids Nat. Phys. 4 771–5

 [25]  Toninelli C, Wyart M, Berthier L, Biroli G and Bouchaud J P 2005 Dynamical susceptibility of glass 
formers: Contrasting the predictions of theoretical scenarios Phys. Rev. E 71 041505

 [26]  Hedges L O, Jack R L, Garrahan J P and Chandler D 2009 Dynamic order-disorder in atomistic models of 
structural glass formers Science 323 1309–13

 [27]  Kawasaki T, Araki T and Tanaka H 2007 Correlation between dynamic heterogeneity and medium-range 
order in two-dimensional glass-forming liquids Phys. Rev. Lett. 99 215701

 [28]  Watanabe K and Tanaka H 2008 Direct observation of medium-range crystalline order in granular liquids 
near the glass transition Phys. Rev. Lett. 100 158002

 [29]  Tanaka H, Kawasaki T, Shintani H and Watanabe K 2010 Critical-like behaviour of glass-forming liquids 
Nat. Mater. 9 324–31

 [30]  Royall C P and Williams S R 2015 The role of local structure in dynamical arrest Phys. Rep. 560 1–75
 [31]  Frank F C 1952 Supercooling of liquids Proc. R. Soc. London A 43–6
 [32]  Tarjus G, Kivelson S A, Nussinov Z and Viot P 2005 The frustration-based approach of supercooled liquids 

and the glass transition: a review and critical assessment J. Phys.: Condens. Matter 17 R1143
 [33]  Leocmach M, Russo J and Tanaka H 2013 Importance of many-body correlations in glass transition: an 

example from polydisperse hard spheres J. Chem. Phys. 138 12A536
 [34]  Leocmach M and Tanaka H 2012 Roles of icosahedral and crystal-like order in the hard spheres glass 

transition Nat. Commun. 3 974
 [35]  Poon W C K, Weeks E R and Royall C P 2012 On measuring colloidal volume fractions Soft Matter 8 21–30
 [36]  Pellet C and Cloitre M 2016 The glass and jamming transitions of soft polyelectrolyte microgel suspensions 

Soft Matter 12 3710–20
 [37]  Mohanty P S, Paloli D, Crassous J J, Zaccarelli E and Schurtenberger P 2014 Eective interactions between 

soft-repulsive colloids: experiments, theory, and simulations J. Chem. Phys. 140 094901
 [38]  Vlassopoulos D 2004 Colloidal star polymers: models for studying dynamically arrested states in soft matter 

J. Polym. Sci. B 42 2931–41
 [39]  Mattsson J, Wyss H M, Fernandez-Nieves A, Miyazaki K, Hu Z, Reichman D R and Weitz D A 2009 Soft 

colloids make strong glasses Nature 462 83–6
 [40]  Gasser U, Hyatt J S, Lietor-Santos J-J, Herman E S, Lyon L A and Fernandez-Nieves A 2014 Form factor of 

pnipam microgels in overpacked states J. Chem. Phys. 141 034901
 [41]  Scotti A 2015 Phase behavior of binary mixtures and polydisperse suspensions of compressible spheres PhD 

Thesis ETH-Zürich
 [42]  Fasolo M and Sollich P 2003 Equilibrium phase behavior of polydisperse hard spheres Phys. Rev. Lett. 

91 068301
 [43]  Zaccarelli E, Valeriani C, Sanz E, Poon W C K, Cates M E and Pusey P N 2009 Crystallization of hard-

sphere glasses Phys. Rev. Lett. 103 135704
 [44]  Zhang C, O’Donovan C B, Corwin E I, Cardinaux F, Mason T G, Möbius M E and Scheold F 2015 

Structure of marginally jammed polydisperse packings of frictionless spheres Phys. Rev. E 91 032302
 [45]  Bibette J 1991 Depletion interactions and fractionated crystallization for polydisperse emulsion purification 

J. Colloid Interface Sci. 147 474–8
 [46]  Brujic J 2004 Experimental Study of Stress Transmission Through Particulate Matter (Cambridge: 

University of Cambridge)
 [47]  Rycroft C 2009 Voro++: a Three-Dimensional Voronoi Cell Library in c+ + (Berkeley, CA: Lawrence 

Berkeley National Laboratory)

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
http://dx.doi.org/10.1103/PhysRevE.59.715
http://dx.doi.org/10.1103/PhysRevE.59.715
http://dx.doi.org/10.1103/PhysRevE.59.715
http://dx.doi.org/10.1039/C4SM01125B
http://dx.doi.org/10.1039/C4SM01125B
http://dx.doi.org/10.1039/C4SM01125B
http://dx.doi.org/10.1038/nphys3709
http://dx.doi.org/10.1038/nphys3709
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1126/science.287.5453.627
http://dx.doi.org/10.1073/pnas.1507897112
http://dx.doi.org/10.1073/pnas.1507897112
http://dx.doi.org/10.1073/pnas.1507897112
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1103/PhysRevA.40.1045
http://dx.doi.org/10.1038/nphys1050
http://dx.doi.org/10.1038/nphys1050
http://dx.doi.org/10.1038/nphys1050
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1103/PhysRevE.71.041505
http://dx.doi.org/10.1126/science.1166665
http://dx.doi.org/10.1126/science.1166665
http://dx.doi.org/10.1126/science.1166665
http://dx.doi.org/10.1103/PhysRevLett.99.215701
http://dx.doi.org/10.1103/PhysRevLett.99.215701
http://dx.doi.org/10.1103/PhysRevLett.100.158002
http://dx.doi.org/10.1103/PhysRevLett.100.158002
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1038/nmat2634
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1016/j.physrep.2014.11.004
http://dx.doi.org/10.1098/rspa.1952.0194
http://dx.doi.org/10.1098/rspa.1952.0194
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1088/0953-8984/17/50/R01
http://dx.doi.org/10.1063/1.4769981
http://dx.doi.org/10.1063/1.4769981
http://dx.doi.org/10.1038/ncomms1974
http://dx.doi.org/10.1038/ncomms1974
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1039/C1SM06083J
http://dx.doi.org/10.1039/C5SM03001C
http://dx.doi.org/10.1039/C5SM03001C
http://dx.doi.org/10.1039/C5SM03001C
http://dx.doi.org/10.1063/1.4866644
http://dx.doi.org/10.1063/1.4866644
http://dx.doi.org/10.1002/polb.20152
http://dx.doi.org/10.1002/polb.20152
http://dx.doi.org/10.1002/polb.20152
http://dx.doi.org/10.1038/nature08457
http://dx.doi.org/10.1038/nature08457
http://dx.doi.org/10.1038/nature08457
http://dx.doi.org/10.1063/1.4885444
http://dx.doi.org/10.1063/1.4885444
http://dx.doi.org/10.1103/PhysRevLett.91.068301
http://dx.doi.org/10.1103/PhysRevLett.91.068301
http://dx.doi.org/10.1103/PhysRevLett.103.135704
http://dx.doi.org/10.1103/PhysRevLett.103.135704
http://dx.doi.org/10.1103/PhysRevE.91.032302
http://dx.doi.org/10.1103/PhysRevE.91.032302
http://dx.doi.org/10.1016/0021-9797(91)90181-7
http://dx.doi.org/10.1016/0021-9797(91)90181-7
http://dx.doi.org/10.1016/0021-9797(91)90181-7


Dynamical and structural signatures of the glass transition in emulsions

26doi:10.1088/1742-5468/2016/09/094003

J. S
tat. M

ech. (2016) 094003

 [48]  Desmond K W and Weeks E R 2014 Influence of particle size distribution on random close packing of spheres 
Phys. Rev. E 90 022204

 [49]  Lacasse M-D, Grest G S, Levine D, Mason T G and Weitz D A 1996 Model for the elasticity of compressed 
emulsions Phys. Rev. Lett. 76 3448

 [50]  Berthier L and Witten T A 2009 Compressing nearly hard sphere fluids increases glass fragility Europhys. 
Lett. 86 10001

 [51]  Ikeda A, Berthier L and Sollich P 2012 Unified study of glass and jamming rheology in soft particle systems 
Phys. Rev. Lett. 109 018301

 [52]  Ikeda A, Berthier L and Sollich P 2013 Disentangling glass and jamming physics in the rheology of soft 
materials Soft Matter 9 7669–83

 [53]  Russo J, Tartaglia P and Sciortino F 2009 Reversible gels of patchy particles: role of the valence J. Chem. 
Phys. 131 014504

 [54]  Seth J R, Cloitre M and Bonnecaze R T 2006 Elastic properties of soft particle pastes J. Rheol. 50 353–76
 [55]  Zaccarelli E, Liddle S M and Poon W C K 2015 On polydispersity and the hard sphere glass transition Soft 

Matter 11 324–30
 [56]  Doliwa B and Heuer A 1998 Cage eect, local anisotropies, and dynamic heterogeneities at the glass 

transition: a computer study of hard spheres Phys. Rev. Lett. 80 4915
 [57]  Weeks E R and Weitz D A 2002 Properties of cage rearrangements observed near the colloidal glass 

transition Phys. Rev. Lett. 89 095704
 [58]  Zhang C 2015 Confocal microscopy of the glass and the jamming transition in microscale emulsions PhD 

Thesis University of Fribourg, Switzerland
 [59]  Kob W, Donati C, Plimpton S J, Poole P H and Glotzer S C 1997 Dynamical heterogeneities in a 

supercooled lennard-jones liquid Phys. Rev. Lett. 79 2827
 [60]  Donati C, Glotzer S C, Poole P H, Kob W and Plimpton S J 1999 Spatial correlations of mobility and 

immobility in a glass-forming lennard-jones liquid Phys. Rev. E 60 3107
 [61]  Kegel W K and van Blaaderen A 2000 Direct observation of dynamical heterogeneities in colloidal hard-

sphere suspensions Science 287 290–3
 [62]  Silbert L E, Liu A J and Nagel S R 2006 Structural signatures of the unjamming transition at zero 

temperature Phys. Rev. E 73 041304
 [63]  Jacquin H, Berthier L and Zamponi F 2011 Microscopic mean-field theory of the jamming transition Phys. 

Rev. Lett. 106 135702
 [64]  Zhang Z, Xu N, Chen D T N, Yunker P, Alsayed A M, Aptowicz K B, Habdas P, Liu A J J, Nagel S R and 

Yodh A G 2009 Thermal vestige of the zero-temperature jamming transition Nature 459 230–3
 [65]  Cheng X 2010 Experimental study of the jamming transition at zero temperature Phys. Rev. E 81 031301
 [66]  Paloli D, Mohanty P S, Crassous J J, Zaccarelli E and Schurtenberger P 2013 Fluid-solid transitions in  

soft-repulsive colloids Soft Matter 9 3000–4
 [67]  Liu A J, Nagel S R, Van Saarloos W and Wyart M 2010 Dynamical Heterogeneities in Glasses, Colloids, 

and Granular Media (Oxford: Oxford University Press)
 [68]  Damasceno P F, Engel M and Glotzer S C 2012 Predictive self-assembly of polyhedra into complex 

structures Science 337 453–7
 [69]  Steinhardt P J, Nelson D R and Ronchetti M 1983 Bond-orientational order in liquids and glasses Phys. 

Rev. B 28 784
 [70]  Lechner W and Dellago C 2008 Accurate determination of crystal structures based on averaged local bond 

order parameters J. Chem. Phys. 129 114707
 [71]  Martinez V A, Zaccarelli E, Sanz E, Valeriani C and van Megen W 2014 Exposing a dynamical signature of 

the freezing transition through the sound propagation gap Nat. Commun. 5 5503
 [72]  Puertas A M, Fuchs M and Cates M E 2003 Simulation study of nonergodicity transitions: gelation in 

colloidal systems with short-range attractions Phys. Rev. E 67 031406
 [73]  Zaccarelli E and Poon W C K 2009 Colloidal glasses and gels: the interplay of bonding and caging Proc. Natl 

Acad. Sci. 106 15203–8
 [74]  Malins A, Williams S R, Eggers J and Royall C P 2013 Identification of structure in condensed matter with 

the topological cluster classification J. Chem. Phys. 139 234506
 [75]  Onuki A 2002 Phase Transition Dynamics (Cambridge: Cambridge University Press)
 [76]  Charbonneau P and Tarjus G 2013 Decorrelation of the static and dynamic length scales in hard-sphere glass 

formers Phys. Rev. E 87 042305
 [77]  Jack R L, Dunleavy A J and Royall C P 2014 Information-theoretic measurements of coupling between 

structure and dynamics in glass formers Phys. Rev. Lett. 113 095703

http://dx.doi.org/10.1088/1742-5468/2016/09/094003
http://dx.doi.org/10.1103/PhysRevE.90.022204
http://dx.doi.org/10.1103/PhysRevE.90.022204
http://dx.doi.org/10.1103/PhysRevLett.76.3448
http://dx.doi.org/10.1103/PhysRevLett.76.3448
http://dx.doi.org/10.1209/0295-5075/86/10001
http://dx.doi.org/10.1209/0295-5075/86/10001
http://dx.doi.org/10.1103/PhysRevLett.109.018301
http://dx.doi.org/10.1103/PhysRevLett.109.018301
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1039/c3sm50503k
http://dx.doi.org/10.1063/1.3153843
http://dx.doi.org/10.1063/1.3153843
http://dx.doi.org/10.1122/1.2186982
http://dx.doi.org/10.1122/1.2186982
http://dx.doi.org/10.1122/1.2186982
http://dx.doi.org/10.1039/C4SM02321H
http://dx.doi.org/10.1039/C4SM02321H
http://dx.doi.org/10.1039/C4SM02321H
http://dx.doi.org/10.1103/PhysRevLett.80.4915
http://dx.doi.org/10.1103/PhysRevLett.80.4915
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.89.095704
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/PhysRevLett.79.2827
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1103/PhysRevE.60.3107
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1126/science.287.5451.290
http://dx.doi.org/10.1103/PhysRevE.73.041304
http://dx.doi.org/10.1103/PhysRevE.73.041304
http://dx.doi.org/10.1103/PhysRevLett.106.135702
http://dx.doi.org/10.1103/PhysRevLett.106.135702
http://dx.doi.org/10.1038/nature07998
http://dx.doi.org/10.1038/nature07998
http://dx.doi.org/10.1038/nature07998
http://dx.doi.org/10.1103/PhysRevE.81.031301
http://dx.doi.org/10.1103/PhysRevE.81.031301
http://dx.doi.org/10.1039/c2sm27654b
http://dx.doi.org/10.1039/c2sm27654b
http://dx.doi.org/10.1039/c2sm27654b
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1126/science.1220869
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1103/PhysRevB.28.784
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1063/1.2977970
http://dx.doi.org/10.1038/ncomms6503
http://dx.doi.org/10.1038/ncomms6503
http://dx.doi.org/10.1103/PhysRevE.67.031406
http://dx.doi.org/10.1103/PhysRevE.67.031406
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1073/pnas.0902294106
http://dx.doi.org/10.1063/1.4832897
http://dx.doi.org/10.1063/1.4832897
http://dx.doi.org/10.1103/PhysRevE.87.042305
http://dx.doi.org/10.1103/PhysRevE.87.042305
http://dx.doi.org/10.1103/PhysRevLett.113.095703
http://dx.doi.org/10.1103/PhysRevLett.113.095703

