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Soft responsive colloids are ideal model systems to investigate fundamental problems in statistical
mechanics. An important open problem is whether it is possible to establish a direct connection
between the elastic properties at the single particle level and the resulting interaction potential in
bulk suspensions, particularly in the high-concentration regime. Here we examine this question by
focusing on thermoresponsive, colloidal-sized polymer networks, namely microgels, the archetype of
soft colloids. Microgels are often assumed to interact through a simple Hertzian potential, a classic
model in linear elasticity. By developing an appropriate methodology, that can be generalized to
any kind of soft particle, we are able for the first time to calculate all the elastic moduli of microgels
across their volume phase transition (VPT). With increasing temperature, we find a monotonous
increase of the bulk, Young and shear moduli, whereas the Poisson’s ratio exhibits a non-monotonic
behaviour characterized by a minimum close to the VPT in agreement with experimental results and
theoretical predictions. We also calculate the particle-particle effective interactions and compare it
with the Hertzian potential using the estimated moduli. We find that the Hertzian model works
well in the regime of small deformations. Carrying out additional bulk simulations we are also
able to pinpoint the region of validity of the Hertzian approximation, which is found to hold up to
nominal packing fractions close to unity. Our study thus validates a classical model in fundamental
physics and paves the way for a systematic assessment of single-particle elastic properties and for a
microscopic understanding of their relation with softness and effective interactions.

I. INTRODUCTION

Colloidal suspensions have been used for decades as
model systems for investigating fundamental condensed
matter phenomena [1–6]. Compared to atomic and
molecular systems, colloids have much larger character-
istic time- and length-scales, which makes them more ac-
cessible from an experimental point of view. In this con-
text, the most iconic (and probably studied) soft matter
system is certainly hard spheres [1, 7]. Being the proto-
type of athermal particles, hard spheres have a single con-
trol parameter that fully determines their behaviour, i.e.
their packing fraction. Notwithstanding the unique sim-
plicity of the system, hard spheres exhibit a non-trivial
behaviour that features crystallisation [2, 8–11] as well as
glass and jamming transitions [12–15]. Decades of the-
oretical, computational and experimental work on hard
spheres have generated an incredible wealth of results
that have (and still do) shed light on the microscopic
origin of some of these phenomena.

By increasing the complexity of the system, and hence
going beyond hard spheres, the range of possibilities is
greatly enlarged. Indeed, in the soft-matter realm the
mutual interactions between building blocks can be tuned
to a high degree, making it possible to work with parti-
cles that effectively attract each other (and hence can,
for instance, drive the appearance of a gas-liquid sep-
aration and of the associated critical point [16]) or that
interact through non-spherical potentials [17–19] and can
give rise to, for instance, exotic crystal or liquid-crystal
phases [20–22]. However, for the majority of these cases
the shape and size of the particles do not depend on
the external control parameters (temperature, packing
fraction, external fields, etc.), and the particles can be

effectively considered as undeformable objects. Adding
internal degrees of freedom, and thereby making the par-
ticles soft and responsive, completely changes their be-
haviour [23]. Far from being a mere academic curios-
ity, the role played by the softness in determining the
overall behaviour of a system is fundamental in many di-
verse fields, ranging from biology [24, 25] to fundamental
physics [5, 26–28].

Among the most used soft colloids, microgels are par-
ticles made of crosslinked polymer networks that can be
made responsive to external stimuli such as temperature
or pH changes [29]. Indeed, as the external conditions
change, the polymeric nature of the particle reacts by ad-
justing its internal structure. A well-known phenomenon
associated to thermoresponsive microgels is the so-called
volume phase transition (VPT), a sharp change of the
particle size due to the variation of temperature, and
hence of the quality of the solvent as felt by the poly-
mers that constitute the network [30]. From an applica-
tive standpoint, the responsiveness of microgels can be
used to produce smart materials such as lens or pho-
tonic crystals [31] or can be employed in biomedicine as
drug-delivery carriers [32], in food industry [33], in water
purification [34] or in chemical sensing [35]. From a fun-
damental perspective, the possibility of finely tuning the
size of particle makes it possible to control the packing
fraction in situ, without changing the number density of
the samples. Such a high degree of control is very impor-
tant to investigate phenomena that are very sensitive to
packing, such as glass and jamming transitions [36, 37].
However, varying the size of particles through e.g. a tem-
perature change, in turn affects the internal structure
and the interactions between the particles. Furthermore,
different synthetic routes lead to different microscopic ar-
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chitectures that range from homogeneous to core-corona
or even hollow microgels [38]. Since the inner structure
determines the single-particle properties, and hence the
bulk behaviour of the system, a realistic description of
the particles should take into account at least some as-
pects of the polymeric structure in order to capture the
way in which microgels interact with the environment
and with themselves.

The complexity of a suitable theoretical description
can be reduced by systematically reducing the particles’
internal degrees of freedom [39]. For microgels the most
extreme coarse-graining approach is to model them as
spheres interacting through effective pair interactions,
completely neglecting their internal degrees of freedom.
Even though this strategy is strictly valid only in the
dilute regime, it has been shown to yield satisfactory re-
sults in a wider concentration region [40]. In the regime
where a pair-interaction description is supposed to work,
it might also be appropriate to approximate the effective
potential between two microgels with the classic Hertzian
interaction, derived by computing the force acting be-
tween two elastic spheres in the framework of classical
elasticity theory (CET) [41]. Indeed, results based on
the inversion of radial distribution functions of dilute sus-
pensions measured with confocal microscopy experiments
have found functional forms that can be well represented
with a Hertzian potential [42]. Under the CET assump-
tions, the Hertzian effective potential depends only on
the geometry and the zero-stress elastic moduli of the
materials that compose the objects [41]. Consequently,
it should be possible to directly derive the effective inter-
actions, valid at least at low concentrations, by measur-
ing the single-particle elastic properties. These can be
accessed by AFM [43], capillary micromechanics [44] or
osmotic pressure [45] experiments. These measurements
should then be complemented by the evaluation of the
effective interactions in order to validate the Hertzian
theory. Such an experimental effort has not been carried
out yet, probably due to the difficulty to perform both
sets of experiments on the very same particles.

To address this problem, we can then resort to com-
puter simulations. From the numerical side, to date there
are no complete studies on the elasticity of single-particle
microgels, as this requires a realistic mesoscopic mod-
elling of the underlying polymer network which, till very
recently, was missing. Indeed, single microgels have been
modelled in the past few years as coarse-grained polymer
networks built by placing the crosslinkers on a regular
lattice (e.g. a four-coordinated diamond lattice) and join-
ing them with same-length chains. This model has been
used to assess the properties of both neutral and charged
microgels [46–49] and more recently also to investigate
the behaviour of microgels with more complicated archi-
tectures [38, 50]. In order to get rid of the crystalline
structure that underlies diamond-generated networks,
new procedures have been recently developed to gener-
ate disordered microgels with more realistic inner struc-
tures [51–54]. Interestingly, a recent simulation study

reported non-Hertzian effective interaction potentials be-
tween neutral diamond-based microgels [48], at odds with
direct and indirect experimental evidence [40, 42]. In this
work, however, elastic moduli were not calculated but
fixed with ad-hoc assumptions.

In the Hertzian approach microgels are treated as elas-
tic spheres of diameter σ, Young modulus Y (or bulk
modulus K) and Poisson’s ratio ν. However, the calcula-
tion of the elastic moduli of single microgels is a challeng-
ing task. Indeed, apart from K, which can be calculated
via isotropic compression, the crucial point is that, in or-
der to verify the Hertzian picture, one needs to evaluate
simultaneously two elastic moduli. Recent results have
reported the dependence of the bulk modulus across the
volume phase transition [53], but estimates of the other
moduli were not provided and a connection with the ar-
chitecture of the polymer network has not been estab-
lished yet. The main difficulty of setting such a crucial
link is posed by the actual calculation of the elastic mod-
uli at the level of a single (finite-sized) object. In contrast
with biology and biophysics, where much effort has been
devoted to the numerical investigation of the elastic prop-
erties of, for instance, cells [55, 56], membranes [57] and
protein assemblies [58, 59], similar studies on artificial
soft-matter particles have been scarce [60]. Here we fill
this gap by adapting the method developed by Aggarwal
et al. in the context of virus capsids [58] and extending
it to compute the elastic properties of soft colloids.

To this aim we perform simulations of microgels gen-
erated with a sophisticated method that we recently de-
vised and that was shown to build realistic PNIPAM mi-
crogels [52]. Here the network is completely disordered
and possesses the typical inhomogeneous core-corona
structure, that is experimentally measured by neutron
scattering. We calculate all elastic moduli of these mi-
crogels as a function of the crosslinker concentration and
we also determine the effective interactions between two
of these microgels. We are then able to directly connect
the elastic properties to the effective potential, clearly
demonstrating that, at small deformations, the Hertzian
potential is valid. However, as the two microgels become
closer and closer, a situation that occurs at high nominal
packing fractions ζ of the suspension, the CET assump-
tions clearly break down and our effective interactions
are found to significantly deviate from the Hertzian law.
By performing additional simulations of coarse-grained
microgels interacting with the predicted Hertzian poten-
tial and with the calculated effective potential, we finally
assess that the range of validity of the Hertzian potential
should hold up to packing fractions around ζ ≈ 1. Since
the majority of the interesting phenomena arising in mi-
crogel suspensions, such as jamming or dynamical arrest,
happen at even higher values of the packing fraction, our
results demonstrate that, in this regime, more compli-
cated processes than just simple elastic repulsions come
into play. Therefore, different models and methodologies
have to be devised to correctly describe microgels under
these very dense conditions.
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II. METHODS

A. Simulation details

The microgels that we use in our simulations are self-
assembled disordered, fully-bonded networks with a real-
istic core-corona structure as described in Ref. [52]. The
microgel configurations are composed of ≈ 5000 beads
and are generated in a spherical confinement of fixed ra-
dius Z = 25 σm [52], where σm is the monomer diameter.
We examine the influence of crosslinker concentration c
by studying three different microgels respectively with
c = 3.2%, 5.0% and 10%.

In order to evaluate the elastic properties of sin-
gle microgels and the microgel-microgel interaction po-
tential we run constant-temperature molecular dynam-
ics simulations. The monomers of the microgels inter-
act with a classical bead-spring model for polymers[61],
in which bonded monomers interact via the sum of
a Weeks-Chandler-Andersen (WCA), VWCA(r), and a
Finite-Extensible-Nonlinear-Elastic (FENE), VFENE(r),
potentials:

VWCA(r) =

{
4ε
[(
σ
r

)12 − (σr )6]+ ε if r ≤ 2
1
6σ

0 otherwise

VFENE(r) = −εkFR2
0 ln(1− (

r

R0σ
)2) if r < R0σ

with kF = 15 a dimensionless spring constant and R0 =
1.5 the maximum extension value of the bond. Non-
bonded monomers only experience a repulsive WCA po-
tential. In addition, the thermoresponsivity of PNIPAM
microgels is mimicked by adding an attractive term that
implicitly controls the quality of the solvent[62, 63]:

Vα(r) =


−εα if r ≤ 2

1
6σ

1
2αε

[
cos
(
δ
(
r
σ

)2
+ β

)
− 1
]

if 2
1
6 < r ≤ R0σ

0. otherwise

(1)
where δ = π(2.25−21/3)−1 and β = 2π−2.25δ [62]. With
this potential the solvophobicity of the polymers is con-
trolled by the parameter α, which plays the role of the
temperature: when α = 0, monomers do not experience
any mutual attraction, as under good solvent conditions.
As α increases the monomers become more and more
attractive, mimicking bad solvent conditions. This po-
tential was shown to be able to accurately reproduce the
phenomenology of the volume phase transition[52, 54, 64]
which is found to occur, independently of the internal mi-
crogel topology, at α ∼ 0.6.

Reduced temperature T ∗ = kBT/ε = 1.0 is enforced
by using a modified Andersen thermostat [65], where kB
is the Boltzmann constant, T the temperature and ε is
the monomer interaction strength. The equations of mo-
tion are integrated with a velocity-Verlet algorithm using
a reduced timestep ∆t∗ = ∆t

√
ε/(mσm) = 0.002 where

m is the mass of the monomer. Length, mass and en-
ergy are given in units of σm, m and ε, respectively. We

run simulations on single GPUs for 108–109 time steps,
depending on the microgel investigated.

In the following, we first describe and generalize a
method to evaluate the elasticity of soft particles II B.
Then, Sec. II C deals with the machinery we employ to
evaluate microgel-microgel effective interaction. Finally,
we also perform some bulk simulations as discussed in
Sec. II D.

B. Generalized method to calculate all
single-particle elastic moduli

In order to probe the elasticity of single particles we
build on the method reported in Ref. [58] and extend it
to the case of disordered polymer networks. The basic
idea is to monitor the equilibrium fluctuations of shape
and volume of single microgels and to link their distribu-
tions to the elastic moduli. An operative definition for
the shape of an instantaneous microgel conformation is
therefore required. Since, at the lowest order, thermal
fluctuations transform spheres into ellipsoids [66, 67], we
use the latter to approximate the single configurations.
Given the heterogeneity of the microscopic structure, and
hence of the mass distribution, of microgels, the ellip-
soid of gyration does not provide a good estimate of the
shape. We have thus devised a procedure that does not
explicitly depend on the density (or, equivalently, mass)
profile of the particle, but only on the positions of the
monomers that make the outer portion of the particle.
This is done by applying the following scheme to each
equilibrated configuration:

• We generate the smallest convex set of points that
enclose the microgel configuration, i.e. its convex
hull.

• We calculate the gyration tensor of this new set of
points using the centres of mass of each triangle
composing the convex hull.

• We diagonalise the gyration tensor, obtaining the
three eigenvalues λ1, λ2 and λ3. These are sorted
so that λ1 ≥ λ2 ≥ λ3.

The three semi-axes {a} are then related to the eigen-
values through the relation ai =

√
3λi. Figure 1 provides

a pictorial example of a microgel with c = 5.0%, show-
ing the bead-spring configuration, its convex hull and the
associated ellipsoid.

The fluctuations in shape of a given microgel config-
uration are evaluated by constructing a Green-Lagrange
strain tensor, C = FT · F, which provides a measure of
the local deformation, starting from the deformation gra-
dient tensor F. The latter is defined with respect to a
stress-free configuration [58, 68]. Here we choose as ref-
erence configuration an ellipsoid of semi-axes 〈a1〉, 〈a2〉,
〈a3〉, where the angular brackets indicate ensemble av-
erages. We thus write the deformation gradient tensor
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FIG. 1. (a) An equilibrated microgel configuration, (b) its convex hull and (c) its associated ellipsoid.

as:

F =

 a1
〈a1〉 0 0

0 a2
〈a2〉 0

0 0 a3
〈a3〉

 (2)

which implies

C =


(
a1
〈a1〉

)2
0 0

0
(
a2
〈a2〉

)2
0

0 0
(
a3
〈a3〉

)2
 (3)

We thus build the following three strain invariants [68]:

J =
√

det(C) (4)

I1 = tr(C)J−2/3 (5)

I2 =
1

2

[
tr2(C)− tr(C2)

]
J−4/3. (6)

Here J is linked to the volume change, whereas I1 and
I2 are connected to the variation of the shape at fixed
volume. We analyse each configuration and calculate the
probability distribution functions P (J), P (I1) and P (I2).
By construction, the reference configuration has C = I,
Jref = 1 and Iref,1 = Iref,2 = 3. In addition, since the ref-
erence configuration is stress-free, the probability P (X)
should be maximum at X = Xref . We find that for all
investigated cases, the probability distributions always
exhibit a maximum at or very close to Xref , as shown
below, confirming the suitableness of our choice of a ref-
erence configuration.

By following the phenomenological Mooney-Rivlin the-
ory on rubber elasticity, the energy due to thermal excita-
tions can be written as a function of the strain invariants
as [69]:

U(J, I1, I2) = U0 +W (J) +W (I1) +W (I2)

= U0 + V

(
K

2
(J − 1)2 + C10(I1 − 3)+

+ C01(I2 − 3)

) (7)

where U0 is the energy of the reference configuration,
V = 4

3π〈a1〉〈a2〉〈a3〉 is the microgel volume, K is the bulk
modulus and 2(C10 + C01) = G, with G being the shear
modulus. By assuming that the deformations are sta-
tistically independent, we can approximate the three W
functions with the potentials of mean force (PMFs) ex-
tracted from the respective probability distribution func-
tions, viz.

W (X) = −kBT lnP (X) + c (8)

with X = J , I1 or I2 and c an arbitrary constant. Fit-
ting the potentials of mean force to functions of the form
MX(X −X0)γ + CX , where γ = 2 for X = J and γ = 1
otherwise, yields the elastic moduli through the relations:

K =
2MJ

V
(9)

G =
2(MI1 +MI2)

V
. (10)

All other elastic moduli (and related quantities) can be
expressed as functions of K and G [68]. For instance, the
Young modulus Y and the Poisson’s ratio ν are given by

Y =
9KG

3K +G
(11)

ν =
3K − Y

6K
. (12)

Figure 2 shows an example of PMFs and related fits
for the microgel with c = 5.0%. The volume PMF
W (J) is always centered very close to one, whereas the
shape PMFs W (I1) and W (I2) overlap perfectly with
each other and are monotonically increasing functions of
their argument. This evidence thus confirms that the
choice of the reference configuration is sound. All PMFs
can be well-fitted to their theoretical values (Eq. (7)) in
a region of at least 2kBT around the minimum. Farther
away W (J) becomes slightly skewed, whereas the two
shape PMFs develop a shoulder and then keep following
a straight line with a slope that, within the numerical
noise, is compatible with the initial slope. This behaviour
is shared by all microgels investigated in this work.
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FIG. 2. Potentials of mean force for (left) J and (right) I1
and I2. Points are simulation data, lines are fits (see text for
details).
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FIG. 3. The bulk modulus K computed with different meth-
ods as a function of α.

To validate the approach outlined above, we calculate
the bulk modulus K in four other ways and compare it
to the one calculated from W (J). Two of these alterna-
tive methods exploit the fact that K is the inverse of the
isothermal compressibility χT , which can be straightfor-
wardly computed from the volume fluctuations as [7]:

χT = kBT
〈V 2〉 − 〈V 〉2

〈V 〉
(13)

where V is the instantaneous volume. We estimate V
either as the volume enclosed by the convex hull or as
the volume of the ellipsoid that best approximates it.

The bulk modulus can also be evaluated by directly
looking at the elastic response of the microgels upon com-
pression. To do so, we confine microgels in spherical
cavities of decreasing radius and estimate the resulting
internal pressure Pint. For small compressions Pint lin-
early depends on V , with K being the proportionality
constant [53]. We thus fit Pint(V ) in the linear regime,
where V can be taken as either the convex hull or the
ellipsoid volume, to yield two more alternative estimates
of K.

Figure 3 compares the different results for K for a mi-
crogel with c = 5% as a function of α, as obtained by

each of the five methods just described. First of all,
we notice that data sets closely follow each other as α
varies. It is evident that the Mooney-Rivlin approach
and the ellipsoid-volume fluctuations yield essentially the
same results, since both are based on the same assump-
tions and make use of the same input data. By con-
trast, the fluctuations of the convex-hull volume and the
compression approach result in somewhat larger values
of K. This difference is due to the fact that approximat-
ing the convex hull with an ellipsoid results in slightly
larger fluctuations of the microgel volume and hence in
a smaller K. Depending on the considered microgel, the
observed difference in K between the various methods
ranges from ≈ 20% to ≈ 50%. In particular, the differ-
ence between the Mooney-Rivlin approach and the com-
pression method is even smaller when the volume of the
ellipsoid is considered. Given that there is no unambigu-
ous way of determining the characteristic volume of a
polymeric object, as different applications may need dif-
ferent definitions [70], it is hard to tell a priori which
method is best. However, the various sets of curves can
be readily rescaled on top of each other by means of a
multiplicative shift, thus all leading to qualitatively sim-
ilar results for all investigated cases. For the above rea-
sons, in the following we focus on the Mooney-Rivlin ap-
proach, because this is the only method that allows us
to simultaneously obtain also the shear modulus G, and
from these two moduli, to extract all the others.

C. Microgel-microgel effective interactions

We calculate the microgel-microgel effective interac-
tions using two distinct and complementary methods.
We simulate two microgels at different separation pa-
rameters r. To tackle the large-separation region we
use a generalised Widom insertion scheme [71], which is
very efficient in sampling the small-deformation regime.
At smaller separation between the microgels (or, equiva-
lently, at larger deformations) we use umbrella sampling
and add an harmonic biasing potential acting on the cen-
tres of mass of the two microgels [72]. The resulting ef-
fective potential is calculated as,

V (r) = −kBT ln g(r) (14)

where g(r) is the radial distribution function.
In the Hertzian approximation, two elastic spheres in-

teract with an effective potential that is induced by the
elastic mechanical deformation as [41]:

VH(r) =
2Y σ3

15(1− ν2)

(
1− r

σ

) 5
2

, (15)

where σ is the effective Hertzian diameter. This will be
determined by comparing the predicted potential VH(r)
with the numerical one, V (r) (Eq. 14), using the elastic
moduli calculated as described in Section II B. In order
to do this comparison, it is also necessary to take into
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account an additional constant A, which accounts for the
(weak) repulsion due to loose dangling hands that stick
out of the corona [73] and whose role will be discussed
later. Thus, we will consider the following expression
V (r) = VH(r) +A.

During the umbrella sampling simulations we also
monitor the shape of the microgel conformations as the
separation between the two particles varies. To this aim,
we consider the so-called relative shape anisotropy pa-
rameter, defined as

κ2 =

〈
3

2

a21 + a22 + a23
(a1 + a2 + a3)2

− 1

2

〉
(16)

where 〈·〉 indicates an average over all conformations.
The value of κ2 is linked to the mass distribution of the
monomers. Indeed, if κ2 = 0 the spatial distribution of
the monomers is spherically symmetric, whereas if κ2 = 1
all the monomers lie on a line.

D. Bulk simulations

Finally, we also run bulk simulations of particles inter-
acting through the effective interactions derived above,
both V (r) and VH(r), in order to compare the properties
of the two types of systems for different nominal packing
fractions ζ. We thus perform molecular dynamics simula-
tions of polydisperse systems (with a polydispersity index
of 10% in order to suppress crystallisation) composed of
N = 1000 particles in the NV T ensemble for several val-

ues of the nominal packing fraction ζ = πσ3

6
N
V , where σ

as above is the Hertzian effective diameter and V is the
volume of the simulation box. We set kBT = 1

β = 1 and

monitor the equation of state, βP = βP (ζ), by comput-
ing the virial pressure as well as the radial distribution
function g(r) of the system as a function of ζ.

III. RESULTS

A. Single-particle elastic moduli of microgels and
comparison to available experiments

Having established and validated a robust procedure
to calculate the moduli of single microgels, we now ap-
ply this methodology to microgels with three different
crosslinker concentrations, c = 3.2%, 5% and 10%, for
different values of the solvophobicity parameter α across
the volume phase transition.

Figure 4 reports the results for the bulk, shear and
Young moduli for three different microgels as a function
of α from the fully swollen (α = 0) to a deswollen (albeit
not fully collapsed) state (α = 1.0). For all cases investi-
gated here all the elastic moduli increase monotonically
with α and c, at least within the numerical noise. The in-
crease with c is readily explained by noting that the elas-
tic moduli are monotonically increasing functions of the

0

0.1

0.2

0.3

0.4

β
K

c = 3.2%

c = 5.0%

c = 10%

0

0.04

0.08

0.12

β
G

0 0.2 0.4 0.6 0.8 1
α

0

0.1

0.2

0.3

0.4

β
Y

FIG. 4. The elastic moduli (top) K, (middle) G and (bot-
tom) Y (normalised by β = 1/kBT ) as functions of α for all
investigated microgels. The elastic moduli are expressed in
units of 1/σ3

m.

(effective) crosslinker concentration [74]). By contrast,
the monotonic dependence of the elastic moduli on α is
more puzzling. Indeed, numerical and theoretical results
on hydrogels [75] and microgels [43, 44, 73] seem to sug-
gest that the bulk modulus, the Young modulus or both
should exhibit a dip close to the VPT temperature. Such
a behaviour might be explained, at least from a qualita-
tive standpoint, by noting that K is the inverse of the
isothermal compressibility χT . Even though it is still not
clear whether the VPT in microgels should be modelled
as a proper phase transition or as a crossover [76, 77], χT
should always display a maximum at the transition (or
crossover) temperature. Nevertheless, we do not observe
any minimum in K. One possible reason for this behav-
ior could be the small size of the investigated microgels,
while another reason could be the fact that we use an im-
plicit solvent. While we intend to investigate these two
aspects in the future by examining larger system sizes
and microgels in an explicit solvent[78], we also note that
a recent numerical study on relatively large microgels in
an explicit solvent reported a bulk modulus that also
monotonically increases across the VPT, in qualitative
agreement About the dependence of the Young modulus
on α, there is in principle no evident reason why it should
display a minimum at the VPT.

One other aspect to notice is that the majority of the
experimental results on hydrogels [75] and the few avail-
able results on microgels [44] report K > G. However, in
our simulations, we always find that the shear and bulk
moduli are very close to each other, with G often being
the largest among the two, at least up to α ≈ 0.7 after
which K starts to grow more rapidly. The softest mi-
crogel (c = 3.2%) exhibits the largest difference, with K
being visibly smaller than G.

Thanks to the joint calculation of two different elas-
tic moduli, we are for the first time able to numerically
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FIG. 5. The Poisson’s ratio ν for the three microgels as a
function of α.

quantify the Poisson’s ratio ν of in silico microgels. Fig-
ure 5 shows ν for the three investigated microgels across
the VPT. We observe a clear non-monotonic behaviour,
with a minimum appearing in the range α ∈ [0.5, 0.6],
i.e. close to the VPT temperature. Despite the qual-
itative difference observed in the individual behavior of
the K, G and Y moduli, the appearance of a minimum in
the Poisson’s ratio is in very good agreement with experi-
ments, as it has been observed both for hydrogels [75] and
for large microgels investigated with capillary microme-
chanics [44]. Interestingly, we find that the minimum
deepens and moves towards slightly higher values of α
as the crosslinker concentration decreases. In the litera-
ture, the emergence of a minimum in the Poisson’s ratio
has always been explicitly or implicitly presumed to be
connected with the presence of a minimum in either the
bulk or Young modulus [43, 44]. By contrast, our results
clearly show that the two phenomena are not necessarily
linked and that a genuine minimum is found also when
all other moduli are monotonic.

It is now interesting to compare the absolute values
of the calculated moduli with the available experimental
measurements. Converting our numerical units to the ex-
perimental ones by considering microgels with diameters
of the order of ≈ 400 nm, we find that the measured mod-
uli range from tens to hundreds of Pascals (or even thou-
sands as α increases), increasing with crosslinker concen-
tration c. Micromechanical measurements [44] yield K in
the range 103 − 104 Pa and G in the range 102 − 103 Pa
in the swollen state for particle of radius from 20 µm to
50 µm. The moduli are also found to increase with c. In
addition, from microrheology measurements for microgel
of 1µm size, a value of the shear modulus per particle was
extrapolated in the range of 102 Pa [79] in closer agree-
ment with our numerical estimates. On the other hand,
Atomic Force Microscopy (AFM) measurements for mi-
crogels with a conventional radius of the order of 300 nm
reported Y of the order of 104 Pa[43]. This value is higher
than what would be estimated from the micromechanics
measurements discussed above by using Eq. 11, suggest-
ing that the Young moduli extracted from AFM may

be sensibly larger than the intrinsic one of the particles.
This may be due to the well-known dependence of Y on
the indentation depth[80], so that AFM measurements
may actually provide the Young modulus of the core of
the microgel, rather than that resulting from the whole
particle, being not sensitive enough to the weak corona
contribution.

To summarize the results of this section, we note that
we have been able to provide an overall realistic esti-
mate of single particle moduli. However, a systematic
investigation by changing particle size and a careful com-
parison between different measurements will be crucial
to further elucidate this point. It is also important to
stress that our approach features the common flexible
bead-spring model for polymers, and it has not been ad-
justed to describe in particular PNIPAM or another spe-
cific polymer. Employing more refined models (such as
semi-flexible polymers or explicit solvents) will provide
other sources of refinement in order to achieve a bet-
ter quantitative description of experiments. All in all,
the minimum that we find in the Poisson’s ratio close to
the VPT is a remarkable result, being the first numeri-
cal confirmation of a general experimental trend found in
microgel suspensions as well as in hydrogels, which con-
firms the robustness and the validity of the methodology
developed in this work.

B. Effective interactions and validation of the
Hertzian model at small deformations

We now report results of the effective two-body in-
teraction βV (r), calculated from explicit simulations of
two microgels as described in the Methods section. Fig-
ure 6 (a) shows the calculated potentials for the three
studied crosslinker concentration in the swollen state
(α = 0.0). As expected, the potential is always repulsive
and it becomes steeper for increasing c, while its range
decreases because microgels become more compact. We
compare the calculated interactions with the Hertzian
model, whose strength is fixed to the elastic moduli that
we have calculated. Thus, the only free parameters in-
volved in the fitting procedure are the effective Hertzian
diameter σ and the residual repulsion A. Figure 6(b-d)
show the comparisons of βV (r) for the c = 5.0% mi-
crogel with the Hertzian predictions (Eq. (15)) for three
different values of α. Data are shown only up to 20 kBT
because we find that the Hertzian fits work well but only
in the region 0.5 ≤ βV (r) ≤ 6.0. We stress that we are
able to obtain a good agreement with simulation data, es-
pecially for low values of α, for all microgels investigated
and hence for all examined crosslinker concentrations.
We thus confirm the Hertzian nature of the microgel-
microgel effective interactions in good solvent, at least
for average separations that are associated to an effec-
tive repulsion of the order of the thermal energy. The
high quality of the fits also demonstrates the validity of
the method we use to extract the values of the elastic



8

0

5

10

15

20

β
V

(r
)

α = 0.0 α = 0.3

0

5

10

15

20

α = 0.5

0.7 0.8 0.9 1.0
0.001

0.002

0.003

κ
2

0.7 0.8 0.9 1.0
r / σ

0.7 0.8 0.9 1.0
0.001

0.002

0.003

20 30 40
r / σ

m

0

50

100

150
β

V
(r

)

c = 3.2%
c = 5.0%
c = 10%

(a)

(c) (d)(b)

(e) (f) (g)

FIG. 6. (a) Effective interactions βV (r) between two microgels with various crosslinker concentrations in the swollen state
(α = 0.0); (b-d) comparison of the calculated βV (r) (symbols) with Hertzian potential ( lines) for microgels with c = 5.0% and
three different values of α approaching the VPT from below. The amplitude of the Hertzian is fixed to the calculated elastic
moduli (see Eq. (15));(e-g) Corresponding shape anisotropy parameter κ2 (see Eq. (16)) as a function of microgel separation.

moduli from the simulations. Indeed, we checked that
values of Y that differ by a factor of two or more gen-
erate deviations from the numerical effective interactions
that cannot be cured by varying σ or A.

The origin of the deviation from the Hertzian be-
haviour can be traced back to the breakdown of one of
the key assumptions of the CET. When microgels start
to overlap more strongly with each other, and hence feel
a mutual repulsion that far exceeds the thermal energy,
they also deform. This can be seen in the bottom panels
of Figure 6, which shows the relative shape anisotropy pa-
rameter κ2 as a function of the separation r. Regardless
of the value of α, we see that κ2 remains fairly constant
down to a value of r below which it starts to increase
more rapidly. This crossover value of r is, for all the cases
investigated here, fully compatible with the distance at
which the Hertzian and the full effective interaction start
to deviate, clearly demonstrating the close connection
existing between the extent of the deformation and the
resulting effective interaction.

In addition to the confirmation of the Hertzian na-
ture of the effective interactions at small deformations,
the fitting procedure also yields quantities that have a
physical significance. In particular, the energetic pref-

actor in Eq. (15), U ≡ 2Y σ3

15(1−ν2) , has been estimated for

real PNIPAM microgels under good solvent conditions,
for instance by fitting experimental data with simula-
tions [40] or by inverting the radial distribution function
of a sample in the dilute regime [42, 81]. In general, the
resulting repulsion strengths are found to be of the order
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FIG. 7. (Top) The Hertzian energy prefactor, (middle) the
dangling-end residual repulsion contribution and (bottom)
the ratio between the diameter of gyration 2Rg and the elastic
diameter σ for microgels of varying crosslinker concentration
and for different values of α.

of tens to hundreds of kBT ’s. The top panel of Figure 7
shows U for the microgels investigated here as functions
of α. There is a clear trend with c since, owing to their in-
creased softness, microgels with fewer crosslinkers display
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smaller values of U . We always find values that are of the
order of hundreds of kBT ’s, in qualitative agreement with
the fits to experimental data presented in Ref. [40]. We
have not investigated microgels with c < 3.2%, and hence
cannot directly compare with the results of Refs. [42, 81],
where c is not explicitly calculated but can be estimated
to be ≤ 1%. However, a linear extrapolation to this
range of crosslinker concentrations yields lower bounds
of U ≈ 100 kBT , in agreement with the experimental
values.

It has been suggested that the core-corona structure
of microgels might be complemented by an outer corona
which comprises the dangling ends and loops that can
stick out of the particle [73, 82]. Since the density of
this region is very small, its contribution towards the
radius of gyration is tiny. However, its effect on the hy-
drodynamic radius should be relevant. From the stand-
point of microgel-microgel interactions, the extent of the
repulsion exerted by the loose dangling ends and loops
is here embodied by the constant A. Figure 7 shows
that the magnitude of this repulsion is always smaller
than kBT . It remains fairly constant as we approach
the VPT, although sometimes for α = 0.5 the numerical
noise increases enough to make it hard to resolve such
a tiny contribution with the required accuracy, resulting
in cases where A ∼ 0. Indeed, we notice that we cannot
evaluate effective interactions for α > 0.5 because the mi-
crogels become too attractive and our numerical methods
become increasingly inefficient. However, in the inves-
tigated range of α values, our results strongly suggest
that the role played by the dangling ends in determining
microgel-microgel repulsions is negligible.

The last parameter that comes out of the fitting pro-
cedure described above is the effective (elastic) diameter
σ. We find that σ is always significantly larger than Rg,
thus resembling the hydrodynamic radius of the particles.
Indeed, previous studies have shown that the Hertzian
model works in describing experimental g(r) if σ coin-
cides with the hydrodynamic radius [40]. It would be
interesting to check this in more detail in the future by
performing a quantitative comparison with experiments.
In addition, we notice that σ and the gyration radius Rg
are always essentially proportional in the whole α-range,
as highlighted by the bottom panel of Figure 7, which
shows 2Rg/σ. Interestingly, this ratio changes by just
≈ 10% going from the densest to the softest microgel.
These results provide a way of experimentally estimat-
ing σ without having to directly measure the microgel-
microgel effective interactions. Together with the notion
that A is negligible and U can be estimated by measur-
ing the single-microgel elastic moduli, our results suggest
that it is possible to derive microgel-microgel interactions
in the small-deformation regime from measurements of
simple single-particle properties.

C. Validity of the Hertzian model in bulk
suspensions

In the previous section we showed that, outside the
small-deformation regime when microgels begin to inter-
act more strongly, the Hertzian potential quickly starts
to underestimate the repulsion, which gets steeper and
steeper as r decreases. At the same time, the shape of the
particles becomes less and less spherical, as highlighted
by the increase in κ2 (see bottom panels of Figure 6).
More refined theoretical approaches such as the elastic-
ity theory for large deformations developed by Tatara [83]
can sometimes improve the agreement up to a few tens
of kBT ’s, depending on the microgel considered. How-
ever, as the concentration increases and microgels pack
more tightly, many-body interactions acquire a greater
importance and a description based on pair potentials
becomes questionable [60]. Thus there exists a crossover
in packing fraction ζ across which the system goes from
a Hertzian-dominated regime to a regime where large de-
formations and the many-body nature of the microgel-
microgel interactions come into play.
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FIG. 8. (Left) Radial distribution functions g(r) for particles
interacting through the true effective potential (dark dashed
lines) and its Hertzian approximation (light solid lines) with
ζ = 0.52 (black lines), ζ = 1.05 (red lines) and ζ = 1.52 (blue
lines). The system simulated is composed of microgels with
c = 5% and Z = 25 σm. (Right) The pressure difference
between two systems (normalised by the non-Hertzian pres-
sure) as a function of the packing fraction ζ for three different
microgels.

In order to estimate the packing fraction ζ at which
the Hertzian description breaks down, we simulate bulk
systems of microgels modelled as soft spheres interacting
through either the calculated effective potentials V (r)
of Fig. 6 or their Hertzian approximations VH(r). Fig-
ure 8(a) shows the radial distribution functions of a sys-
tem of c = 5% microgels for different ζ. The two poten-
tials we use yield systems with identical structure up to
ζ ≈ 1. Above this value, the true and Hertzian radial dis-
tribution functions starts to deviate, with the Hertzian
system exhibiting a broadening of the first peak and an
overall weakening of the structure compared to the true
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system. We quantify the dissimilarity between the two
systems by evaluating the difference between their equa-
tions of state, viz.

∆P

P
=
P − PH

P
(17)

where PH and P are the pressures in the Hertzian and
non-Hertzian system, respectively. Fig. 8(b) shows the
dependence of ∆P/P on the packing fraction for micro-
gels with three different values of c. The behaviour of the
pressure difference convincingly confirms the structural
analysis discussed above: as soon as ζ ≈ 1, ∆P/P be-
comes much more sensitive to the packing fraction, grow-
ing steeply with ζ. However, the crossover value at which
non-Hertzian contributions start to play a role seems to
depend systematically on c, with more crosslinked mi-
crogels showing an earlier deviation from the Hertzian
model. Indeed, we find that the Hertzian model seems
to work quantitatively up to ζ ≈ 0.8 for c = 10% and
up to ζ ≈ 1.2 for c = 3.2%, indicating that softer mi-
crogels obey the Hertzian model in a more extended
regime with respect to hard ones. The onset of deviations
from the Hertzian model takes place for packing fractions
at which jamming transitions [42] and density-induced
deswelling [84] are observed in some microgel systems,
underlining the importance of using detailed mesoscopic
models to investigate high-density conditions. Indeed,
since the dynamics of dense systems is known to be ex-
tremely sensitive to the underlying structure [85], caution
should be exercised when developing theoretical and nu-
merical models aimed at matching experimental results.

IV. CONCLUSIONS

Polymer-based particles such as star polymers, den-
drimers and microgels have become prominent in the soft
matter field in force of the tunability of their internal
structure and, consequently, of the control achievable on
their mutual interactions. Such a high degree of con-
trol comes at the cost of an increase in the complexity
of the single-particle properties (e.g. size, shape, elas-
ticity), which become more strongly dependent on the
external parameters such as temperature or packing frac-
tion. It is thus imperative to establish a link between the
microscopic architecture, the particle properties at the
mesoscopic level and the macroscopic bulk behaviour. A
first attempt to provide such connection by reducing the
complexity of the system comes from the Hertzian the-
ory, which can be used to describe soft colloids as elas-
tic spheres whose interaction is determined solely by the
single-particle elastic moduli. Despite the large use of
such approximation to describe the collective behaviour
of soft colloids, a systematic study to establish its validity
and failure across several particles concentrations had not
been carried out yet. We fill this gap in the present work
thanks to the joint calculation of single-particle elastic
moduli and of effective interactions and thus provide ev-

idence of the validity of the Hertzian model at small de-
formations and in an extended range of packing fractions
in bulk suspensions of soft colloids.

To achieve this goal we exploit a mesoscopic, realis-
tic description of microgel particles, which are being in-
creasingly used as model systems in soft matter, and we
further develop a methodology that has allowed us to nu-
merically evaluate the single-particle elastic moduli from
the fluctuations of the shape and volume of the particles.
This advanced technique is generic for soft particles with
complex architecture and can thus be readily extended
to other types of systems, such as star polymers [86] or
dendrimers [87].

When applying our method to the calculation of elas-
ticity of single microgel particles, we find results in quali-
tative agreement with the scarce experimental literature.
In particular, we observe a non-monotonic behaviour of
the Poisson’s ratio with a minimum occurring close to the
VPT, as also found in experiments [44]. By monitoring
the dependence of the elastic properties on the crosslinker
concentration, we also show that the minimum becomes
deeper with decreasing c, a feature that will be interest-
ing to compare with experimental results when more data
will be available. Furthermore, we find that our in sil-
ico microgels display an enhanced stiffness with increas-
ing temperature, originated by monotonously increasing
bulk, Young and shear moduli.

We then deploy different computational techniques,
namely umbrella sampling and the generalised Widom
insertion scheme, to calculate effective interactions oc-
curring between two microgel particles in a wide range
of separation distances. We use the values of the elas-
tic moduli, extracted beforehand, to verify the validity
of the Hertzian model from microscopic principles. In-
deed, by comparing the true pair interaction with the
theoretical predicted one, we find an excellent agree-
ment at large particle distances, up to a repulsion en-
ergy of ≈ 6kBT , where microgels pay a small energy
penalty to undergo tiny deformations. For shorter sep-
arations, the deformation of the microgels becomes im-
portant and a clear deviation of the calculated interac-
tions from the Hertzian model is detected, with the for-
mer exhibiting a much steeper increase as the distance
decreases. This is in agreement with the CET assump-
tions underlying the Hertzian model, which should in-
deed be valid only in the small deformation regime. To
further quantify the validity of the Hertzian pair inter-
actions to describe the behavior of bulk suspensions, we
additionally performed simulations of particles interact-
ing through the Hertzian and the numerical pair poten-
tial, demonstrating that neutral microgels behave like
Hertzian spheres up to nominal packing fractions of the
order of ζ ≈ 1. In this regime, not only a pair-potential
description might become debatable [60], but other phe-
nomena that cannot be described by the classical elastic-
ity theory, such as faceting, interpenetration and inter-
particle entanglement[88, 89] might become more and
more relevant.
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Our work have thus convincingly demonstrated that
there exists an intimate link between the internal archi-
tecture of soft colloids and their effective interactions. By
also establishing the conditions when the Hertzian model
fails, particularly at high deformations and at high pack-
ing conditions, we showed that the microscopic details of
the inner structure of the particle are extremely impor-
tant and must be taken into account to achieve a quan-
titative description of the bulk behaviour of suspensions
of soft colloids. This finding entails that many results on
the glass and jamming transition obtained at high den-
sity with simple Hertzian or similar soft repulsions should

be reconsidered under a new light. In this respect, more
refined approaches, either built on a coarse-grained treat-
ment including many-body interactions[90, 91] or that
explicitly include the deformability of the particles[28, 92]
will need to be employed in the future in order to cor-
rectly describe the peculiar features of soft colloids close
to or above close packing.
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S. Seiffert, Macromol. Chem. Phys. 215, 1116 (2014).
[77] A. Habicht, W. Schmolke, G. Goerigk, F. Lange, K. Saal-

waechter, M. Ballauff, and S. Seiffert, J. Polym. Sci. B
53, 1112 (2015).

[78] F. Camerin, N. Gnan, L. Rovigatti, and E. Zaccarelli,
arXiv preprint arXiv:1807.07893 (2018).

[79] F. Di Lorenzo and S. Seiffert, Macromolecules 46, 1962
(2013).

[80] A. Burmistrova, M. Richter, C. Uzum, and R. v. Klitz-
ing, Colloid and Polymer Science 289, 613 (2011).

[81] A. A. M., H. Yilong, and Y. A. G., “Melting and ge-
ometric frustration in temperature-sensitive colloids,” in
Microgel Suspensions (Wiley-Blackwell, 2011) Chap. 10,
pp. 229–281.

[82] M. Dulle, S. Jaber, S. Rosenfeldt, A. Radulescu,
S. Forster, P. Mulvaney, and M. Karg, Phys. Chem.
Chem. Phys. 17, 1354 (2015).

[83] Y. Tatara, J. Eng. Mater. Technol. 113, 285 (1991).
[84] G. Romeo, L. Imperiali, J.-W. Kim, A. Fernández-

Nieves, and D. A. Weitz, The Journal of Chemical
Physics 136, 124905 (2012).

[85] W. Götze, Complex dynamics of glass-forming liquids: A
mode-coupling theory, Vol. 143 (OUP Oxford, 2008).

[86] G. S. Grest, L. J. Fetters, J. S. Huang, and D. Richter,
Advances in Chemical Physics: Polymeric Systems 94,
67 (1996).

[87] C. C. Lee, J. A. MacKay, J. M. Fréchet, and F. C. Szoka,
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