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Abstract. The numerical investigation of the statics and dynamics of systems in non-equilibrium in general,
and under shear flow in particular, has become more and more common. However, not all the numerical
methods developed to simulate equilibrium systems can be successfully adapted to out-of-equilibrium cases.
This is especially true for thermostats. Indeed, even though thermostats developed to work under equilib-
rium conditions sometimes display good agreement with rheology experiments, their performance rapidly
degrades beyond weak dissipation and small shear rates. Here we focus on gauging the relative perfor-
mances of three thermostats, Langevin, dissipative particle dynamics, and Bussi-Donadio-Parrinello under
varying parameters and external conditions. We compare their effectiveness by looking at different observ-
ables and clearly demonstrate that choosing the right thermostat (and its parameters) requires a careful
evaluation of, at least, temperature, density and velocity profiles. We also show that small modifications
of the Langevin and DPD thermostats greatly enhance their performance in a wide range of parameters.

1 Introduction

In molecular dynamics (MD) simulations, the motion of
N individual particles in a specified volume V evolves
according to Newton’s laws. Hence, since the energy is
conserved, from a thermodynamic point of view the re-
sulting system is a microcanonical ensemble (NV E) [1,2].
However, in order to mimic experimental conditions it is
often necessary to simulate systems at constant temper-
ature rather than energy, obtaining a canonical ensemble
(NV T ). The control of the temperature is achieved by
coupling the system to a so-called “thermostat”, which
acts as a thermal bath. During the course of the years
many different thermostats have been developed to not
only reduce the side effects due to the coupling, but also
to more accurately reproduce the phenomena observed in
experiments. For instance, many thermostats that exhibit
a good temperature control do not correctly reproduce hy-
drodynamics, which require local momentum conservation
and Galilean invariance. There exist methods that explic-
itly incorporate in the simulation solvent particles, such
as multi-particle collision dynamics (MPCD) [3–5], thus

� Contribution to the Topical Issue “Advances in Computa-
tional Methods for Soft Matter Systems” edited by Lorenzo
Rovigatti, Flavio Romano, John Russo.

a e-mail: jose.manuel.ruiz.franco@roma1.infn.it

naturally building the correct hydrodynamics in the sys-
tems. However, these methods lie outside the scope of the
present work, which deals with implicit solvent treatment
only.

In the following excursus we provide a non-compre-
hensive list of well-known thermostats. We consider only
thermostats that take into account the effects of the sol-
vent in an implicit way. We start with the well-known
Berendsen thermostat [6]. It consists in rescaling all par-
ticle velocities after a certain number of time steps so that
the (instantaneous) kinetic energy matches the target one.
This guarantees a constant thermodynamic temperature.
The main drawback is that it does not sample the NV T
ensemble [7], which implies that it is dangerous to use it
for data production. Furthermore, it is not Galilean in-
variant and it does not locally conserve momentum.

A very simple, yet effective thermostat is the Ander-
sen thermostat [8]. Here the coupling between the system
and a “heat bath” is explicit: particles undergo random
collisions with the (fictitious) solvent, effectively acquir-
ing new momenta extracted from a Maxwell-Boltzmann
distribution corresponding to the desired temperature T .
This thermostat is local, but it is not Galilean invariant.

The Nose-Hoover (NH) thermostat comes next [9,10].
It introduces in the Hamiltonian of the system an addi-
tional internal degree of freedom which acts as an effec-
tive friction parameter and represents the thermostat cou-
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pling. Once again, this thermostat is non-Galilean invari-
ant. Furthermore, the additional degree of freedom alters
the dynamics, leading to artificial hydrodynamics [11]. A
common improvement over the original implementation is
to consider Nose-Hoover chains, that is, a NH thermostat
with more than one thermostat variable [12]. This ther-
mostat is global, since the instantaneous value of the tem-
perature is based on a global definition, and non-Galilean
invariant.

The Langevin thermostat [13], which will be discussed
in depth in what follows, guarantees ergodicity in all pos-
sible cases. Dissipative and noise forces are added to the
Hamiltonian to include the effective behaviour of the sol-
vent [1]. Its main disadvantage is that it does not repro-
duce hydrodynamics [14] because it is not Galilean invari-
ant and does not locally conserve momentum. In order to
overcome such a limitation dissipative particle dynamics
(DPD) was introduced by Hoogerbrugge and Koelman [15]
and later modified by Espanol and Warren [16] to satisfy
the fluctuation-dissipation theorem. This thermostat rep-
resents a modification of the Langevin thermostat. In the
DPD thermostat the friction and noise terms are pairwise
and act over all pairs of neighbouring particles, i.e., at the
local level. In addition, the Galilean invariance is ensured
by the fact that the drag force acts on the relative veloc-
ity. However, it has several disadvantages. The most im-
portant are: i) in order to employ large time steps to effec-
tively speed up the simulation, care has to be taken when
choosing the right integration algorithm [17–21]; ii) the
Schmidt number Sc = η/ρD, defined as the ratio between
the viscosity η and the diffusion constant D, is found to
be close to 1, while for most common liquids Sc is of the
order of 103. iii) The value of the size of DPD particles,
set by rc, cannot be determined a priori [22]. In general,
the value of Sc can be improved upon by incorporating a
third parameter (s) which modifies the weighting function
for the dissipative force [23,24]. As we will discuss below,
Sc can be written as a function of s, providing us with
an efficient way (in computational terms) to increase this
number.

In addition, different improvements of the DPD scheme
have been developed. For instance, in order to conserve
angular momentum, it was proposed to introduce an ad-
ditional variable [25, 26]. Moreover, if the objective is to
study chemical reactions where there is a temperature
gradient, it is necessary to introduce an additional en-
ergy term stemming from the interaction between pairs
of particles [27]. Finally, DPD can be also combined with
Smoothed Particle Hydrodynamics (SPH) [28, 29] to in-
clude the Navier-Stokes equations in the modelling of the
solvent particles with the so-called Smoothed Dissipative
Particle Dynamics (SDPD) [30, 31]. It should be noted
that DPD can also be used to model an explicit solvent,
for example by considering solute and solvent particles
with different masses and sizes [32,33].

More recently, different thermostats implemented as
combinations of the above have been proposed. For in-
stance, Stoyanov and Groot [11] introduced a combina-
tion of the Lowe-Andersen (LA) and NH thermostats. A
fraction of particles is thermalized with the NH thermo-

stat, while the others are thermalized with the LA. The
resulting thermostat is local, Galilean invariant and sta-
ble even for large time steps Δt. However, it presents two
main problems: i) for Δt → 0 it does not converge to the
standard DPD, and ii) it has been shown that it does not
sample the canonical ensemble.

Finally, we mention one last thermostat: the Bussi-
Donadio-Parrinello (BDP) [7] thermostat. The BDP is a
reformulation of the Berendsen thermostat in which the
momenta rescaling factor α is computed according to a
stochastic evolution of the kinetic energy rather than to
a fixed value. Such a change makes the BDP correctly
sample the canonical ensemble. In its global, rather than
local, implementation, hydrodynamics is not correctly re-
produced and the specific value of the rescaling frequency
does not affect the dynamics [34].

In this work we focus on non-equilibrium molecular
dynamics (NEMD) simulations, aimed in particular to de-
scribe rheology experiments. As in equilibrium, a good
control of the temperature is necessary. However, it is also
imperative that NEMD simulations faithfully reproduce a
realistic dynamics, without any artefacts introduced by
the thermostat. This, in turn, requires a detailed assess-
ment of the effects that the thermostat could artificially
induce on the behaviour of the system. To answer this
question, we consider a representative model system, i.e.
a Lennard-Jones fluid, under steady shear flow and mon-
itor its behavior under the action of three different ther-
mostats (Langevin, DPD and BDP) for a wide choice of
parameters. In recent years both the Langevin [35–37]
and DPD approaches [38–40] have been used to perform
NEMD simulations. The DPD approach has sometimes
been the preferred choice because it better reproduces hy-
drodynamic effects, while the BDP thermostat allows to
consider a wider range of shear rates [41]. However, we
will show that a poor choice of the thermostat param-
eters can negatively affect the dynamic response of the
system under shear, providing a physical picture very far
from reality. While there exist direct comparisons between
Langevin and DPD thermostats, for instance in the case
of coarse-grained bead-spring models for polymers [42],
their absolute or relative performances as a function of
the different parameters are seldom discussed in depth.
Here we aim to fill this gap, providing a reference test
case which can be used as a guidance for choosing a ther-
mostat and its parameters to carry out reliable NEMD
simulations. Finally, we note that we are interested in bulk
systems, and hence we will consider systems where peri-
odic boundary conditions are enforced, as we will describe
below. However, NEMD simulations can also be performed
with wall boundaries that constrain the system in a well-
defined geometry. The walls can then be moved to repro-
duce an oscillatory or steady shear to drive the system
away from equilibrium [43,44]. In addition, it is also pos-
sible to play with the nature of the wall in order to study
slip effects [45–47]. Also in this case, different thermostat-
ing strategies are available [48].

We note on passing that the integration algorithms are
also an important point to consider [21], even if we do not
explicitly focus on this aspect.
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The paper is organised as follows. In sect. 2 we in-
troduce the simulation details and describe in detail the
three thermostats studied in this work. We then discuss
the different observables which we have measured to study
the behaviour of the thermostats. In sect. 3 the effects of
the different thermostats are shown under both equilib-
rium and shear flow conditions. In sect. 4 we draw our
conclusions.

2 Simulations details

2.1 Equilibrium

We study a system composed of N = 2000 monodis-
perse particles of mass m and size σ interacting through
a Lennard-Jones potential

V (r) = 4ε
[(σ

r

)12

−
(σ

r

)6
]

, (1)

where ε controls the depth of the potential. The param-
eters σ and ε are chosen as units of length and energy,
respectively. We also set kB = 1. The potential is cut at
rc = 2.5σ. We fix the number density of the system to
ρ = 0.844 and study two different temperatures, T = 1.5
and T = 0.722, corresponding to liquid-like states in the
supercritical region and close to the triple point, respec-
tively. In order to reduce the numerical errors intrinsic to
integration schemes [21, 49, 50], we fix the time step to
Δt = 0.002 for both equilibrium and NEMD simulations.

2.2 Steady shear

Shear flow is applied by using Lees-Edwards boundary
conditions [51], where different layers of image boxes in
the direction of the flow gradient are considered as moving
with a shear velocity vs. Hence, the shear rate is γ̇ = vs/L,
where L is the length of the simulation box. The mod-
ified periodic boundary conditions thus impose a time-
dependent linear shear flow in the x direction such that
the shear gradient is parallel to z and the vorticity is along
the y direction. The flow velocity u = γ̇zx depends lin-
early on z (planar Couette flow) and is zero in the centre
of the channel (z = L/2). In this work we use γ̇ = 0.01 and
γ̇ = 0.1. We notice that these conditions can be also inves-
tigated by solving the SLLOD equations of motion [52],
for which several thermostats have been adapted [53, 54].
However, this algorithm has not been used in this work.

In general, the energy injected by the shear flow
needs to be dissipated by the thermostat. The mecha-
nism through which this happens affects the flow pro-
file. There are two classes of thermostats that allow to
dissipate the extra energy: profile-unbiased thermostats
(PUT), which allow the velocity profile to emerge as a
characteristic response of the system and profile-biased
thermostats (PBT), which enforce a fixed streaming ve-
locity profile [55]. In the following we will present and use
thermostats of both kinds.

2.3 Langevin thermostat

The equations of motion for the Langevin dynamics are

miṙi = vi, mir̈i =
∑
j(�=i)

FC
ij + FR

i + FD
i , (2)

where the first term is the usual conservative pairwise
force, FD

i = −ξmvi is the dissipative (drag) force with
friction constant ξ and FR

i is the random force due to
the thermal motion of the bath particles, modelled as a
stochastic white noise with zero mean and variance

〈
FR

i (t) · FR
j (t′)

〉
=

√
2kBTξδijδ(t − t′). (3)

The variance of the stochastic force is set by the
fluctuation-dissipation theorem. The combination of dis-
sipative and random forces is used to represent the ef-
fect of the solvent on the system. The parameter ξ ef-
fectively controls the viscosity of such fictitious solvent.
Depending on its value, the system can be found either
in the Brownian (overdamped Langevin dynamics) or in
the Langevin regime (underdamped Langevin dynamics).
The integration of eq. (2) is carried out with the self-
adaptive OVRVO [56] scheme: if ξΔt � 1, the algorithm
reduces to the Euler-Maruyama method [57], whereas for
ξΔt � 1 the algorithm is equivalent to the Langevin
method [58]. This algorithm is a profile-unbiased ther-
mostat, which is suitable for both equilibrium and non-
equilibrium dynamics.

We further implement two variants of the Langevin
thermostat. The first one consists in turning off the conser-
vative and dissipative forces along one or two directions.
This modification has been sometimes shown to be able
to correct some spurious artefacts appearing under non-
equilibrium dynamics [38]. In what follows the Langevin
thermostat acting on one, two and three directions will be
indicated with ξy, ξyz and ξxyz, respectively. In the second
variant, the drag force acts on the peculiar velocity, that
is, on the difference between the absolute velocity vi, and
the streaming velocity field or shear flow u, rather than
on the absolute velocity. With this modification eq. (2)
becomes

mir̈i =
∑
j(�=i)

FC
ij − ξ (pi − mui) + FR

i . (4)

This enforces the velocity profile to be linear (profile-
biased conditions). We integrate, eq. (4) with the so-called
BAOAB [50] algorithm. The use of OVRVO and BAOAB
algorithms do not present any difference in equilibrium,
when u = 0. In the following we will use the symbol ξpec

to refer to this version of the Langevin thermostat, acting
on the “peculiar” velocity.

2.4 Dissipative Particle Dynamics

The DPD thermostat locally conserves momentum be-
cause all forces act between pairs of particles. It is also
Galilean invariant because the dissipative force acts on
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relative velocities only. Since it does not explicitly enforce
a linear velocity profile, the DPD thermostat is a PUT.
The equations of motion are written as

miṙi = vi, mir̈i =
∑
j �=i

[
FC

ij + FR
ij + FD

ij

]
, (5)

where we use the same notation as above and the pairwise
random and dissipative forces are given by

FR
ij =

√
2kBTξwR (rij) θij r̂ij , (6)

FD
ij = −ξwD (rij) [r̂ij · vij ] r̂ij , (7)

where vij = vi − vj and rij = ri − rj are the relative
velocities and distances of particles i and j, respectively,
and r̂ij = rij/rij . The variable θij = θji is a Gaussian
noise term with zero mean and variance given by

〈θij(t)θkl(t′)〉 = (δikδjl + δilδjk) δ(t − t′). (8)

The functions wD(rij) and wR(rij) are weight func-
tions. They are related by the stationary solution of the
Fokker-Planck equation where the dissipation-fluctuation
theorem is satisfied through the relation [16]

wD (rij) =
[
wR (rij)

]2
. (9)

Consequently, one of these two weight functions can be
chosen freely. Fan et al. introduced a generalized weighting
function for the dissipative force [23]

ωD (rij) =
[
ωR (rij)

]2
=

⎧⎪⎨
⎪⎩

(
1 − rij

rc

)s

, rij < rc,

0, rij ≥ rc,

(10)

where s and rc are the exponent and the cutoff radius of
the weighting function, respectively. The latter parame-
ter defines the size of DPD particles [22]. Taking rc = 1
and s = 2 we recover the conventional DPD algorithm, as
obtained by Groot and Warren [59].

The three parameters of the thermostat, i.e. s, rc and
ξ determine the transport properties of the system [23,60].
Indeed, in ref. [24] it is shown that both the shear viscosity
η and the constant diffusion D, and thus also the Schmidt
number, all depend on the three DPD parameters. How-
ever, the value of rc greatly affects the computational cost,
since it controls the number of pairs of particles that en-
ters into the thermostating procedure. Therefore, changes
to s or ξ present a more efficient way to obtain a more re-
alistic value of Sc. Furthermore, as it will be shown below,
they play an important role not only in the control of the
temperature, but also in the generic dynamic response of
the system under shear.

The DPD equations of motion can be integrated by
different schemes [21], the two most famous ones being
the Lowe-Andersen [17] and Peters [20] algorithms. The
first one is inspired by the Andersen thermostat, but in-
stead of thermalizing the velocity of individual particles, it
thermalizes the relative velocities of two neighbouring par-
ticles with a probability P = ΓΔt. However, for Δt → 0 it

does not converge to the standard DPD system. This issue
is resolved by adopting the Peters scheme, as done in this
work. Two observations are in order. First of all, we have
tested that the thermalization does not need to follow a
random order, as suggested in ref. [20], but can be carried
out sequentially, as also mentioned in ref. [21]. Secondly,
it has been suggested that, for the sake of efficiency, Gaus-
sian random numbers of zero mean and unitary variance
can be well-approximated by using a uniform distribution
between ±

√
3 [61]. As shown below (see fig. 5(b)), this is

not always the case, as there exist combinations of param-
eters for which non-Gaussian random numbers yield the
wrong temperature.

2.5 Bussi-Donadio-Parrinello (BDP) thermostat

The BDP thermostat is similar in spirit to the Berend-
sen thermostat, because the velocities of the particles are

rescaled by a factor α [6]. In both cases α =
√

Kt

K , where
Kt is the target value of the kinetic energy at time t and K
is the instantaneous kinetic energy. However, in the BDP
case Kt is not constant but evolves stochastically accord-
ing to the canonical distribution of the kinetic energy [7].
Reference [7] gives an explicit expression for the rescaling
factor, which reads

α2 = e−Δt/τ +
K̄

NfK

(
1 − e−Δt/τ

)⎛
⎝R2

1 +
Nf∑
i+2

R2
i

⎞
⎠

+2R1e
−Δt/τ

√
K̄

NfK

(
1 − e−Δt/τ

)
, (11)

where K̄ = Nf/2kBT is the target temperature, Nf is
the number of degrees of freedom, Ri’s are independent
random numbers extracted from a Gaussian distribution
with zero mean and unitary variance and the parameter
τ , which is defined as τ = (2ξ)−1 (dimensions of time),
determines the time scale of the thermostat. Note that,
in the non-local implementation of the BDP that we use
here, the parameter τ does not truly represent the effect
of the solvent [34], and thus a change in τ has basically
no effect on the dynamics of the system.

The equations of motion are integrated with the veloc-
ity Verlet method [1]. The BDP thermostat is a PBT since
it acts on the peculiar velocities of the particles, which are
rescaled by the factor α after a specified number of time
steps.

2.6 Observables

We run simulations under equilibrium and non-equilib-
rium conditions. We investigate the dynamics of the sys-
tem by looking at the mean squared displacement 〈r2(t)〉
from which we extract the diffusion coefficient D, defined
as

D = lim
t→∞

〈
r2(t)

〉
6t

. (12)
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Fig. 1. Diffusion coefficient D for the system in equilibrium at T = 1.5 and ρ = 0.844. (a) D calculated with the Langevin
thermostat acting along one, two and three directions. For comparison D calculated with the BDP thermostat is also shown
at both T = 1.5 and T = 0.772 (see ref. [34]). (b) D calculated with DPD thermostat for different sets of parameter. Different
symbols correspond to different values of the exponent: s = 0.25 (circles), s = 0.50 (squares), s = 1.0 (diamonds) and s = 2.0
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In rheology experiments and simulations, this parameter
is fundamental to describe the competition between diffu-
sion and shear flow. In equilibrium, the dynamics of a fluid
is governed by Brownian (diffusive) dynamics. In the pres-
ence of a shear flow an anisotropic microstructure, origi-
nated from the competition between diffusion and shear
effects, appears in the stationary state. While Brownian
dynamics tends to restore the equilibrium of the system,
the shear flow tends to distort its structure. The compe-
tition between the two regimes is encoded in the Peclet
number Pe = τB/τS = σ2γ̇/(4D), where τB and τS are
the characteristic times of diffusion and shear flow, respec-
tively [62].

We also compute the zero-shear viscosity η by using
the Green-Kubo relation [63]

η ≡
∫ ∞

0

Cσσ(t)dt =
β

3V

∫ ∞

0

∑
α<β

〈
σαβ(t)σαβ(0)

〉
dt,

(13)
where β = 1/kBT , V is the volume of the simulation box,
〈· · · 〉 indicates an average over initial conditions and the
microscopic stress tensor σαβ is defined as

σαβ =
N∑

i=1

miviαviβ +
N∑

i<j

rijαrijβ

rij
F (rij) , (14)

where viα is the α-th component of the velocity of parti-
cle i, F (rij) is the force between particles i and j. Since
numerical estimates of the stress autocorrelation function
Cσσ(t) are, especially at high friction, very noisy, we follow
previous work and fit Cσσ(t) with the phenomenological
expression provided in ref. [64].

Finally, we analyse how particles exchange momentum
with their surroundings through the velocity autocorrela-
tion function, defined as

Z(t) =
1
3
〈v(t) · v(0)〉 . (15)

The decay of this function provides information on how
different thermostats make the system’s dynamics decor-
relate over time.

When subject to shear flow, the local properties of the
system, both static and dynamic, change along the gra-
dient direction z. It is therefore useful to divide the sim-
ulation volume into layers of thickness σ and area L × L
perpendicular to the gradient direction. We thus consider:
i) the local temperature T (z), extracted from the kinetic
energy computed from the components of the velocity
which are perpendicular to the shear direction, ii) the lo-
cal density ρ(z), defined as the number of particles in the
layer divided by the volume of the layer (σL2) and iii) the
profile of the x-component of the velocity vx(z), defined
as the average of the velocity along x over all particles in
the layer. Regarding the latter observable, in equilibrium
there is no preferred direction and hence 〈vx(z)〉 ∼ 0 in all
layers. By contrast, the velocity profile of a liquid under
shear flow is linear with x and 〈vx(±L/2)〉 = ±γ̇L/2. If
this is not the case then the velocity profile will exhibit
anomalies, i.e., the appearance of regions where the defor-
mation of the system is not uniform with respect to the
external field. As we will show below, this is related to in-
homogeneities in the density profile, which might indicate
a non-physical behaviour.

3 Results

3.1 Equilibrium

In this section we focus on the system at T = 1.5 in
equilibrium. We start by calculating the diffusion coef-
ficient D, reported in fig. 1(a). First of all, we note that
D obtained via BDP simulations is independent of τ (and
hence of ξ = (2τ)−1) [34]. Since the same holds true for
all other observables investigated, in what follows we use
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the BDP data as reference. We have checked that the
same reference curves are obtained if, at zero shear, no
thermostats are employed, that is, if the simulations are
performed in the NVE ensemble. For both Langevin and
DPD, D is a monotonically decreasing function of ξ. For
the Langevin thermostat, the fewer directions the friction
acts on, the larger is the diffusion coefficient. However,
when ξ ≤ 10−2 Brownian effects are small and D always
tends to a plateau. For the DPD thermostat, the effect of
the two other parameters is also monotonic: D increases
with s and decreases with rc. The dependence on s can
be explained by considering that lower values of s cause
higher correlations between the drag and random forces
in the equations of motion, thereby making the system
decorrelate faster. By contrast, the increase of D with
rc is related to the fact that the larger the cut-off, the
more particles are included in the thermalization proce-

dure. Similar effects have been observed with DPD-related
thermostats [23, 65, 66]. We note that the range of values
of D is comparable for both thermostats, indicating that
they share the same nature. A variation of two orders of
magnitude in D is observed in the explored range of ther-
mostat parameters.

The choice of the parameters also affects the viscosity
which, for the systems investigated here, gives similar in-
formation as D. For instance, the BDP thermostat shows
that Cσσ(t) is independent of τ , which translates to a con-
stant viscosity, as shown in fig. 2(a). With respect to the
Langevin thermostat, in the same range where D is con-
stant, η is also constant (see fig. 2(b)). Finally, fig. 3(a)
and (b) shows that, for the DPD thermostat, the value of
η displays a strong dependence on s. In particular, smaller
values of s induce larger correlations on the microscopic
internal stress, effectively generating larger viscosities.
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Fig. 4. Velocity-autocorrelation function Z(t) (normalized by its zero-time value) for the system in equilibrium at T = 1.5 and
ρ = 0.844 with the Langevin thermostat acting in three (red circles), two (blue squares) and one directions (green diamonds)
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Figure 4 shows Z(t) (normalized by its zero-time value)
for the Langevin thermostat acting on three, two and one
directions for three different values of ξ. At low friction
(ξ = 1), the three curves fall on top of the reference (BDP)
one. However, upon increasing ξ we see that the correla-
tions are removed earlier for the Langevin thermostat that
acts on all three spatial directions. By removing a direc-
tion of thermalization, the overall friction coefficient is ef-
fectively reduced. This is in agreement with the behaviour
observed for D (see fig. 1(a)).

The velocity autocorrelation functions for the DPD
thermostat are shown in fig. 5(a). The dependence of its
decay on s and rc is directly linked to the effect that these
two parameters have on D (see fig. 1(b)), and the effect of
ξ is the same as in the Langevin thermostat. Overall, the
combined effect of the three DPD thermostat parameters
is to tune the viscosity of the system in a finer way with
respect to Langevin dynamics.

A useful tip concerns the use of random numbers ex-
tracted from uniform distributions, which allows to speed
up the computation [61]. We find that this might, in prin-
ciple, produce the wrong temperature profile, depending
on the parameters used. Indeed, fig. 5(b) shows an ex-
ample that was generated with a DPD thermostat with
s = 0.25 and rc = 1.12. For this choice of parameters, the
temperature clearly decreases with increasing ξ, a prob-
lem that is avoided by using a Gaussian distribution for
the random numbers.

We conclude by noting that, at short times (t → 0),
the slope of Z(t) should tend to zero, as seen for the ref-
erence curve. However, when ξ increases the slope of the
autocorrelation function at t = 0 becomes more and more
negative for both DPD and Langevin thermostats. This is
due to the local nature of the thermostating scheme, as
discussed in refs. [67,68].
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3.2 Steady shear with Langevin dynamics

We now focus on the system under steady shear using a
Langevin thermostat. Figure 6 shows T (z), vx(z) and ρ(z)
for both studied values of T and γ̇ and for different values
of the friction constant. For all values of ξ the temperature
is constant at low shear rate (see fig. 6(a.1) and (c.1)),
regardless of the number of spatial directions to which
thermalization is applied. However, upon increasing γ̇ the
temperature profile remains independent of z only for the
three directions Langevin thermostat and for large enough
values of ξ. The density profile (see fig. 6(a.3)–(d.3)) ex-
hibits similar trends. By contrast, the velocity profile vx(z)
has a more complex behaviour, as it is linear only in some
cases. From the plots it is clear that a flat T (z) does not
imply a linear velocity profile and vice versa. Indeed, a
constant T (z) can be obtained by increasing ξ, but the
consequent increase in the fluid viscosity can cause the
appearance of a non-linear velocity profile and unrealis-
tic inhomogeneities in the density profile. These inhomo-
geneities are stronger close to the border of the simulation
box, where the flow velocity is higher (±γ̇ L

2 ). The inho-
mogeneities become more pronounced upon increasing γ̇,
indicating that the Langevin dynamics cannot cope with
the increased stress, or upon decreasing T , when more sta-
ble particle aggregates tend to form. These results clearly

show that a correct control of the temperature does not
guarantee that other fundamental observables, such as the
velocity and density profiles, are correctly reproduced.

Figure 6 also shows that this problem can be only par-
tially mitigated by turning off the thermostat along one
(the flow) or two (the flow and gradient) directions: the
modified thermostats work at low γ̇ only. However, we
do not recommend using this technique as it introduces
additional spatial inhomogeneities in the system [49, 52].
Better performances can be obtained instead by coupling
the system to a Langevin thermostat that acts on the pe-
culiar velocity. In this case, indicated in fig. 6 as ξpec, a
linear velocity profile is, by construction, always recov-
ered. Furthermore, the density profile shows a perfect ho-
mogeneity for any value of ξ. However, in even more ex-
treme cases this modification might still not be enough
to ensure a correct thermalisation, and hence a flat tem-
perature profile, as for too large values of the shear rate,
the thermostat might not be able to dissipate the extra
kinetic energy. However, with the peculiar Langevin ther-
mostat the linear velocity profile is an enforced rather
than an emergent property, meaning that, for instance,
shear banding would not be observed even in cases where
it should be present [38, 40, 69]. For the same reason, the
peculiar Langevin thermostat could hide short-time dy-
namic heterogeneities which appear in glasses [40].
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3.3 Steady shear with DPD thermostat

Figure 7 shows the numerical results under shear flow for
systems thermostated with DPD at T = 0.722 for sev-
eral choices of the thermostat parameters. For γ̇ = 0.01
(fig. 7(a)–(b)) the temperature profile is always constant,
regardless of the specific values of the parameters. How-
ever, the other two observables show that, once again, a
flat T (z) does not guarantee a linear velocity profile. In
fact, we observe that the velocity profile is almost but
not quite linear only for the lowest values of ξ and rc.
Moreover, even though T (z) is constant for all possible
parameter combinations, its fluctuations increase at small
rc. To make things worse, the density profile often exhibits
unrealistic inhomogeneities, as with the original Langevin
dynamics. Upon increasing s the homogeneity of the ve-
locity and density profiles improves.

When we increase the shear rate to γ̇ = 0.1
(fig. 7(c)–(d)), the situation worsens. Indeed, the temper-
ature profile remains constant only at high values of ξ and
rc, i.e. when the thermostat is more coupled (or, equiva-
lently, when the viscosity is higher). In contrast with the
Langevin thermostat, here the variation of ξ has a less
dramatic impact, as the behaviour of the velocity, temper-
ature and density profiles is fairly insensitive to changes
in ξ.

The data at T = 1.5 display qualitatively similar
trends and are not shown here.

3.4 Steady shear with the modified DPD

We have seen that increasing the dissipation through a
change of the DPD parameters helps in controlling the
temperature but negatively affects the velocity profile.
The origin of this issue, which has been observed and de-
scribed in recent work [49,70], can be ascribed to a wrong
handling of the periodic boundary conditions along the
gradient direction z. Indeed, when the z-component of a
particle i position is close to ±L/2, some of its neighbours
are bound to be on the other side of the simulation box
boundary. All these will have a streaming velocity that
is opposite to the one of i, breaking the assumption of
translational invariance and of homogeneity. Indeed, as
noted in refs. [52] and [49], particles should not be able
to sense when they cross box boundaries, so as to avoid
surface effects. The problem can be mitigated by turn-
ing off the thermostat for all those pairs of particles that
are on different sides of the boundary [70–72]. However,
there exists a less invasive approach that gets rid of the
issue altogether. The idea is to correct the relative velocity
between boundary-separated pairs of particles by adding
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a term − round(zij/L)γ̇L that takes into account the ve-
locity difference between the top and the bottom of the
box [49]. Figure 8 demonstrates that this approach results
in a much better control over the temperature, velocity
and density profiles.

3.5 Steady shear with BDP thermostat

While the original implementation of the BDP thermostat
works flawlessly in equilibrium [7], it needs to be adapted
to simulations performed under shear flow. First of all,
the instantaneous kinetic energy K should not take into
account the velocity component along the flow direction.
In addition, during the thermalization step, in a fashion
similar to what has been done for the peculiar version of
the Langevin thermostat, the shear velocity ux(z) = γ̇vz is
subtracted from the vx of each particle i, the thermostat is
applied and then the flow velocity is added back to the new
vx [73]. With this change, the BDP thermostat becomes
a PBT.

Figure 9 shows the performance of the shear-flow ver-
sion of the BDP thermostat for the two investigated tem-
peratures and for two different values of τ . We have al-
ready seen that τ has no effect on the dynamics of the
system in equilibrium (see fig. 1). Similarly, here we see
that the BDP thermostat always works well for the com-
binations of T and γ̇ considered here, regardless of the
specific value of τ . However, we recall that the BDP ther-
mostat we consider has a global nature and hence does not
reproduce hydrodynamics. This thermostat is thus only
recommended to generate initial configurations or refer-
ence data.

4 Conclusions

We have shown that, when studying out-of-equilibrium
systems, having a constant temperature profile is a neces-
sary but not sufficient condition to ensure the correctness
of the simulation. Indeed, one has to be sure that also
the velocity and density profiles exhibit sound behaviours.
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Table 1. Assessment of the Langevin dynamics (a) with and
(b) without the subtraction of the peculiar velocity for differ-
ent values of ξ and γ̇. The  and  symbols tell whether the
combination of parameters reproduce the correct behaviour for
that specific observable or not, respectively.

(a)

Parameters Observables

ξ γ̇ T = 0.722 T = 1.5 vx(z) ρ

1 0.01    

1 0.1    

102 0.01    

102 0.1    

(b)

Parameters Observables

ξ γ̇ T = 0.722 T = 1.5 vx(z) ρ

1 0.01    

1 0.1    

102 0.01    

102 0.1    

Here we have tested several thermostats under different
physical and profile conditions. In general, we observe
that, under PUT conditions, a fine tuning of the ther-
mostat parameters is necessary to avoid non-physical be-
haviours. When γ̇ increases more energy is pumped into
the system and hence the thermostat has to be more
tightly coupled to the system in order to maintain the de-
sired temperature. If the thermostat acts on the absolute
velocities, a too-high friction might cancel the effect of the
imposed shear flow on the particles that are far from the
box boundaries, which is where the flow velocity acquires
the highest values. This, in turn, affect the density profile,
which becomes inhomogeneous.

By contrast, if the thermostat is applied on the pecu-
liar velocities, that is, if we use a PBT, correct velocity
and density profiles will be assured. If we need to ex-
plore high values of γ̇ it is recommended to work with
a PBT. However, doing so will make it impossible to ob-
serve some real physical phenomena such as shear band-
ing. For the Langevin thermostat, PBT conditions can
be implemented by removing the peculiar (flow) velocity
in the friction term (see eq. (4)). A similar remark holds
true for the Bussi-Donadio-Parrinello thermostat, which
turned out to be the most stable and reliable thermostat.
However, the BDP thermostat is also the one exhibiting
the less realistic dynamics. Tables 1 and 2 summarise some
of the results reported.

The best choice in terms of stability, realism and com-
putational efficiency is probably the DPD thermostat,
modified so as to take into account the relative differ-
ence between the streaming velocities at the boundary of
the simulation box [49]. However, this thermostat also de-

Table 2. Assessment of DPD thermostat (without the modifi-
cation) considering the set parameter (s, ξ, rc) values. We only
consider the most common values for ξ and s. The  and 
symbols tell whether the combination of parameters reproduce
the correct behaviour for that specific observable or not, re-
spectively.

Parameters Observables

s rc ξ γ̇ T = 0.722 T = 1.5 vx(z) ρ

0.50 1.12 25 0.01    

0.50 1.12 25 0.1    

1.0 1.12 25 0.01    

1.0 1.12 25 0.1    

0.50 1.88 25 0.01    

0.50 1.88 25 0.1    

1.0 1.88 25 0.01    

1.0 1.88 25 0.1    

pends on the largest number of parameters: the exponent
s, the cut-off rc and the friction constant ξ. According
to our results, the common choice of setting s = 0.5 or
1 gives overall good results. One of the main difficulties
is to choose an optimal value for rc. There is not an a
priori physical motivation to choose a certain value, and
the optimal choice of rc is in general independent on the
other parameters. In general, making a good choice re-
quires a knowledge of the structure of the system under
study. For instance, if rc is much smaller than the aver-
age particle-particle distance, which might happen in di-
lute systems, the thermostat is essentially decoupled from
the system and might not be able to dissipate the extra
energy. Our results show that the cut-off radius should
be between the first maximum and the first minimum of
the g(r), and that too-large values might originate non-
physical behaviour such as anomalies and inhomogeneities
in the velocity and density profiles. A value smaller than
but close to the first minimum of the radial distribution
function of the system is a good starting point.

Throughout the paper we have not analysed the com-
putational efficiency of the different thermostats, which
greatly depends on the computational (e.g., serial vs. par-
allel codes) and model (e.g., short- vs. long-ranged poten-
tials) details. However, for the systems studied here the
BDP thermostat turned out to be the most efficient ther-
mostat, providing an additional reason to use it to produce
exploratory data and to prepare initial configurations for
the production runs. Second comes the Langevin thermo-
stat. The DPD thermostat, which features pair interac-
tions, comes last, even though its efficiency can be im-
proved by using, e.g., Verlet neighbouring lists [74]. Given
the great number of random numbers required by the DPD
thermostat, it might be tempting to extract them from
uniform instead of Gaussian distributions [61]. However,
we advise against it, as doing so yields the wrong tem-
perature profile for some combinations of the thermostat
parameters.



Page 12 of 13 Eur. Phys. J. E (2018) 41: 80

JRF and EZ acknowledge support from ETN-COLLDENSE
(H2020-MCSA-ITN-2014, Grant No. 642774). LR, EZ ac-
knowledge support from the ERC Consolidator Grant 681597
MIMIC. We thank N. Gnan for useful discussions.

Author contribution statement

JRF, LR and EZ performed simulations, analysed results
and wrote the paper.

References

1. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids
(Oxford University Press, 2017).

2. D. Frenkel, B. Smit, Understanding Molecular Simulation:
From Algorithms to Applications, Vol. 1 (Academic Press,
2001).

3. M. Ripoll, K. Mussawisade, R. Winkler, G. Gompper,
Phys. Rev. E 72, 016701 (2005).

4. R. Kapral, Adv. Chem. Phys. 140, 89 (2008).
5. G. Gompper, T. Ihle, D. Kroll, R. Winkler, in Advanced

Computer Simulation Approaches for Soft Matter Sciences
III (Springer, 2009) pp. 1–87.

6. H.J. Berendsen, J.v. Postma, W.F. van Gunsteren, A. Di-
Nola, J. Haak, J. Chem. Phys. 81, 3684 (1984).

7. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126,
014101 (2007).

8. H.C. Andersen, J. Chem. Phys. 72, 2384 (1980).
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