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ABSTRACT
A transition from solid-like to liquid-like behavior occurs when colloidal gels are subjected to a prolonged exposure to a steady
shear. This phenomenon, which is characterized by a yielding point, is found to be strongly dependent on the packing fraction.
However, it is not yet known how the effective inter-particle potential affects this transition. To this aim, we present a numerical
investigation of the rheology of equilibrium gels in which a short-range depletion is complemented by a long-range electrostatic
interaction. We observe a single yielding event in the stress-strain curve, occurring at a fixed strain. The stress overshoot is
found to follow a power-law dependence on the Péclet number, with an exponent larger than that found in depletion gels,
suggesting that its value may depend systematically on the underlying colloid-colloid interactions. We also establish a mapping
between equilibrium states and steady states under shear, which allows us to identify the structural modifications induced by the
presence of the shear. Remarkably, we find that steady states corresponding to the same Péclet number, obtained by different
combinations of shear rate and solvent viscosity, show identical structural and rheological properties. Our results highlight the
importance of understanding the coupling between colloidal interactions, solvent effects, and flow to be able to describe the
microscopic organization of colloidal particles under shear.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5052317

I. INTRODUCTION
Colloidal particles often form disordered arrested states,

such as glasses and gels. Depending on the colloid-colloid
interactions, different kinds of glasses can be found, including
attractive, repulsive, or Wigner glasses.1–4 Similarly colloidal
gels can be formed by different routes.5 An important dis-
tinction can be made to distinguish out-of-equilibrium gels
formed via arrested spinodal decomposition from cases where
gelation is obtained in equilibrium.6 Non-equilibrium gels are
found when colloids interact via hard-sphere-like excluded
volume complemented by an isotropic short-range attraction,
which is typical of depletion effects induced by non-adsorbing
polymer chains. At high enough depletion strength, a colloid
rich-colloid poor phase separation takes place, in which the
dense phase undergoes dynamical arrest into a gel state which

interrupts the spinodal decomposition process.7 On the other
hand, gels can be obtained in equilibrium from a homogeneous
fluid state, when attraction is not isotropic (e.g., patchy or lim-
ited valence6) or when this is counter-acted by an additional
long-range repulsion due to charge effects.8–10 In this case,
the competition between short-range attraction and long-
range repulsion is able to avoid phase separation.11,12 Since
colloidal gels are widely used for a variety of applications,
including biomedical purposes13,14 food processing,15 optical
sensing, thermoelectrics, or catalysis,16 it is fundamental to
control the gelation process and to be able to discriminate
among the wide zoology of colloidal gels.

To study the behavior of colloidal arrested states, one
important experimental tool is rheology. In general, the appli-
cation of a shear flow causes the occurrence of a solid-like
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to liquid-like transition that is preceded by a stress overshoot
Σyield at the yielding point. This indicates the maximum stress
that the system can accumulate.17,18 After yielding, the system
is able to approach a steady state with liquid-like behavior. The
way in which this steady state is reached of course depends
on the studied system and on the shear conditions. However,
different types of arrested states generally respond in a dif-
ferent manner. For the widely studied hard-sphere glasses,
for which excluded volume interactions are responsible for
the kinetic arrest, a single yield mechanism is observed.19,20

This is normally attributed to cage breaking only or to par-
ticle exchange with their nearest neighbours. On the other
hand, for attractive glasses, which can be induced by deple-
tion interactions at relatively high packing fractions φ, two
different yielding points have been reported.21,22 The first one
(Σyield1) is associated with bond breaking at a local level with
the system retaining a solid-like character, while the second
one (Σyield2) is related to a structural rearrangement (cage-
breaking) after which the system is able to flow. Between
the two yielding events, there is a local bond reorganization
which, however, does not significantly alter the system. A dou-
ble yielding mechanism has also been observed for depletion-
induced gel-like samples at φ ∼ 0.40,23 an effect that could
possibly be associated with the relatively large packing frac-
tion. Indeed, the caging effect disappears for φ . 0.2,23 leav-
ing only one yielding point associated with bond-breaking for
low density gels. In addition, it is interesting to note that
for very large attraction strengths (∼100kbT), experiments on
very dilute depletion gels also reported the occurrence of
two yielding mechanisms:24 in this case, the bond breaking
yielding point observed for weaker attractions is preceded by
another yielding point associated with the onset of bond rota-
tion. Furthermore, it is important to consider that the pres-
ence of an imposed shear flow naturally induces anisotropy or
heterogeneity in the structure of the system,25 which affects
the rheological properties.26 This aspect has been tackled in
both experiments27–29 and simulations.30–35

To our knowledge, no rheological studies—either numer-
ical or experimental—have been performed to date on gels
obtained via the competition of short-range attraction and
long-range repulsion. The aim of the present work is to fill
this gap by investigating this type of gels via numerical simu-
lations performing start-up shear experiments for a wide vari-
ety of steady shear conditions. Mainly, we focus on Langevin
Dynamics (LD) simulations, which are appropriate to treat col-
loids in an implicit solvent. With this approach, we provide
evidence that, while some rheological features of depletion-
induced gels are also found in our case, others reveal that the
inter-particle potential plays an important role. Indeed the
long-range repulsion makes our gels more resistant to shear
flow, with a modified dependence of the stress overshoot with
respect to shear (quantified by the Péclet number). Similarly,
we study the implication of the presence of shear flow at
the microscopic level, focusing on the evolution of network
bonds and the anisotropy. Since the competition between
Brownian motion and shear flow modifies the gel response,
we show that a different balance of the two effects allows

producing different anisotropies in the sheared system. Inter-
estingly, we find that the resulting anisotropic patterns take a
characteristic form when the gel undergoes crystallization
under shear. As a next step, we focus on the role of sol-
vent on mechanical response and microscopic gel restruc-
turing. To this end, we also implement Molecular Dynamics
(MD) simulations, where the solvent is neglected. This has
the aim to clarify the influence of the microscopic dynam-
ics on the sheared systems, a practice that has been carried
out, for example, in glassy systems, where it was found that
the long-time dynamics does not depend on the presence
of a solvent.5 Connecting equilibrium and steady states via a
mapping at equal potential energy allows us to highlight the
effect of the shear in counter-acting the long-range repul-
sion, while not significantly altering the local (average) struc-
ture as compared to gels without shear. We find that steady
states obtained at equal Péclet number are identical to each
other, independently of the effective solvent viscosity used in
the simulations. However, the comparison with MD simula-
tions reveals that a different microscopic dynamics inevitably
alters the rheological response of the gel, but does not affect
its average thermodynamic properties. To validate the robust-
ness of our results, we also repeat some simulations for larger
system sizes finding that no size effects are observed for the
steady state properties that we have considered. Some dif-
ferences however arise in the transient immediately after the
start-up of the shear.

The paper is organized as follows: In Sec. II, we describe
the numerical simulations for the different methods that we
use and we also define all the observables that are calculated
in this study. In Sec. III, we present our results discussing
the microscopic organization of the gel in the presence of
shear (Sec. III A), the anisotropy generated by the competi-
tion between Brownian dynamics and shear flow (Sec. III B),
and the shear-induced crystalline structures formed by the
gel (Sec. III C). We also show the results of the mapping
between equilibrium states and stable states under shear
(Secs. III D-III E) and we conclude the section by address-
ing the problem of system size effects (Sec. III F). Finally, in
Sec. IV, we discuss our results and present the conclusions of
our study.

II. METHODS: SIMULATIONS AND THEORY
A. Simulation details

We perform simulations of monodisperse colloids of
diameter σ and mass m in the presence of steady shear. Most
of the simulations are carried out with N = 2000 colloidal par-
ticles, but in order to assess size effects onto the shear results,
we also repeat some simulations for N = 5000 and N = 10 000
colloids. Particles interact via a potential V(r) which is the sum
of a short-range attraction and a long-range repulsion,10,12 as

V(r) = 4ε
[(
σ

r

)2α
−

(
σ

r

)α ]
+ A

e−κr

r/σ
. (1)

Here the short-range attraction (mimicking depletion interac-
tions) is modeled as a generalised Lennard-Jones potential36
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with the potential depth ε and the particle diameter σ being,
respectively, the units of energy and length, while the long-
range repulsion (representing a screened electrostatic con-
tribution) is described by a Yukawa potential where κ is the
inverse of the Debye screening length and A is the repulsion

amplitude. Time is measured in units of
√

(mσ2)/ε . Follow-

ing Ref. 12, we fix α = 18, A = 4ε , and κ = 2σ−1. The resulting
interaction potential is illustrated in Fig. 1. In our simulations,
we fix kB = 1 and use a cutoff of the interactions at rc = 4σ.
Particles interacting with this potential are able to form an
equilibrium gel at low/intermediate packing fractions φ and
sufficiently low temperatures.12,37 In this work, we consider
a packing fraction φ = π

6 σ
3 N
V = 0.16 and T = 0.1, where V

is the volume of the cubic simulation box. To reduce statis-
tical noise, data are always averaged over three independent
realizations.

In our study, we first prepare a gel state in equilibrium
and then we perform a start-up shear test by applying a steady
shear flow onto the gel imposing the so-called Lees-Edwards
boundary conditions.38 We consider the gradient velocity to
be in the ẑ direction, while the shear velocity is in the x̂ direc-
tion so that the shear rate is defined as γ̇ ≡ vx/z and is mea-
sured in inverse time units. We employ a Langevin thermo-
stat which acts on the so-called peculiar velocity,39,40 which
is defined for particle i as v′i,x = vi ,x − ux(z), where vi ,x is the
x-component of the particle thermal velocity and ux(z) = γ̇z is
the stream velocity. Simulations are performed in the canoni-
cal ensemble NVT, and the properties of the solvent are con-
trolled by its viscosity η, which in turn determines the friction
coefficient ξ = 3πησ.

To monitor how the microscopic dynamics affects the
shear response of the gel, we also perform simulations in the
absence of an implicit solvent. To this aim, we use a so-called
Gaussian thermostat, for which the temperature is controlled
by imposing a constant kinetic energy (iso-kinetic ensem-
ble).41 The equations of motion are then solved by means of
the SLLOD integrator.42

FIG. 1. Inter-particle potential (black curve) given by the sum of a short-range
depletion attraction (red curve) and a long-range electrostatic repulsion (blue
curve). The arrows indicate the position of the global minimum of the potential
rmin and of the bond distance rbond .

B. Definition of a generalized Péclet number
The strength of the applied shear is usually quantified by

the Péclet number Pe, which controls the balance between
Brownian motion and shear effects: the behaviour of the sys-
tem is essentially governed by Brownian motion for Pe < 1,
while it is dominated by the shear flow for Pe > 1. However,
in its standard definition,43 the Péclet number is taken to be
equal to γ̇τB, where τB =

σ2

4D is the Brownian time, where
D =

kBT
ξ is the diffusion coefficient of the particle at infi-

nite dilution. This definition is not appropriate to quantify the
strength of the shear on the gel state because the system is
far from dilute conditions and cannot be simply generalized
because the diffusion coefficient in the gel tends to zero. To
provide a meaningful definition of Pe, we adopt the modified
definition of Ref. 23

Pe =
Fvisc
Fbond

, (2)

which quantifies the resistance of the bonds between two col-
loids to the shear. Here Fvisc is the drag force that is able to dis-
place two particles up to a distance larger than the attractive
range of the potential

Fvisc = ξvs, (3)

where vs = γ̇rmin and rmin ≈ 1.05σ is the global minimum of
potential, i.e., the equilibrium distance of two particles (see
Fig. 1). Instead, Fbond is the bonding force which is respon-
sible for maintaining the bond between the two colloids. By
increasing the interparticle distance, Fbond will increase until
the two particles become more far than a maximum distance
rbond, which is the maximum of the potential, after which the
effective force becomes repulsive. In the present case, rbond
= 1.28σ as shown in Fig. 1. We thus define the bonding force as
the variation of energy in the attractive range of the effective
potential ∆r = rbond − rmin, as

Fbond =
∆V(r)
∆r

=
V(rbond) − V(rmin)

rbond − rmin
. (4)

Using the definition of Eq. (2), we find that when the two
forces are balanced, i.e., Pe = 1, the original Péclet number
calculated under dilute conditions would be much higher, i.e.,
≈320.

We notice that the Péclet number can be defined only for
simulations in the presence of a solvent such as the LD ones.
For MD simulations, we thus quantify the strength of the shear
by varying the shear rate only.

C. Calculated observables
During application of the steady shear, we calculate the

internal stress tensor Σxz using the Irving-Kirkwood expres-
sion44

Σxz =
1
V

〈∑
i

[miv′i,xvi,z +
∑
j>i

rij,xFij,z]
〉
, (5)

where rij and Fij are, respectively, the distance and the force
between particles i, j and the brackets 〈. . .〉 represent the
ensemble average.

J. Chem. Phys. 150, 024905 (2019); doi: 10.1063/1.5052317 150, 024905-3

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal of
Chemical Physics ARTICLE scitation.org/journal/jcp

To provide a microscopic understanding of the stress ten-
sor behavior, we monitor the time evolution of the bond orga-
nization between the particles, calculating (i) the fraction of
bonds fb defined as the number of bonds in a given configu-
ration under shear divided by the number of bonds that were
present in the system prior to switching on the shear; (ii) the
fraction of unbroken bonds fu that were also present at zero-
shear; (iii) the bond potential energy Eb,45 defined as the abso-
lute value of the average potential energy between all pairs of
bonded particles, normalized to its initial value, again prior to
switching on the shear flow.

Next, we examine the changes in the structure by calcu-
lating the static structure factor: in equilibrium, this is defined
as

Seq(q) =
1
N

〈∑
ij

e−iq(ri−rj)
〉
, (6)

while when shear is applied, we evaluate it in the velocity-
vorticity plane at qz = 0, as

Sshear
(
qx, qy, 0

)
=

1
N

〈∑
ij

e−i[qx(xi−xj)+qy(yi−yj)]
〉
. (7)

For simplicity, we refer to both types of structure factors as
S(q) in the main text, since they depend only on the modulus
of the wavevector, being it calculated in 3D or in 2D along the
velocity-vorticity plane.

A complementary picture of the structure, which allows
us to identify the anisotropy induced by shear, is provided by
using a suitable expansion of the pair correlation function g(r).
In particular, we consider the expansion

g(r) = gs(r) +
∞∑
l=1

l∑
m=−l

gml (r)Ym
l (θφ) (8)

into spherical harmonics Ylm(θ,φ),46,47 where gs(r) is the usual
(isotropic) radial distribution function48 and the expansion
coefficients are glm(r) = ∫ g(r)Y∗lmdΩ with Ω being the solid
angle and dΩ = sin θdθdφ. Our colloidal gel is made up of iden-
tical particles, implying that g(r) = g(−r). This ensures that only
even values of l ≥ 2 have to be accounted for.46,47 However,
coefficients with l > 2 are of small amplitude so that, in gen-
eral, it is sufficient to consider only the term with l = 2.49 In
addition, due to the geometry of the planar Couette flow, only
coefficients with m = ±2 are in the shear flow plane and the
only non-zero contribution comes from their imaginary part.
We thus focus on the imaginary part with m = −2, i.e., Im g−2

2 (r),
which is calculated as50

Im g−2
2 (r) =

√
15
8π

L3

N2

〈 N∑
i

N∑
j,i

δ
(���ri − rj

��� − r
) (

xi − xj
) (
zi − zj

)
r4

〉
. (9)

This function is characterized by the presence of two peaks:
the first one is a minimum signalling the accumulation of the
particles along the compression axis, while the second one is a
maximum which corresponds to the depletion of the particles
along the extension axis.31,51

To identify solid-like particles, we use the local bond-
order analysis introduced by Steinhardt et al.,52 where
the complex vector qlm(i) of particle i is defined as qlm(i)

= 1
Nb(i)

∑Nbi
j=1 Ylm

(
r̂ij

)
, where Nb(i) is the set of bonded neigh-

bours of particle i and r̂ij is the unit vector specifying the
orientation of the bond between particles i and j. Using the
complex vectors q6m, we are able to assign a solid connection
between particles i and j if d6(i, j) =

∑6
m=−6 q6,m(i) · q∗6,m(j) ≥ 0.7.

A particle is defined to be solid-like if it has 6 or more solid
connections with its neighbours.53 The percentage of solid
particles is thus defined as X(t) = NX

N with NX being the number
of solid-like particles. Following Ref. 60, we also calculate the
rotationally invariant bond order parameters ql(i) and wl(i). To
define these two parameters, it is necessary to compute the
averaged local bond order parameters

qlm(i) =
1

Ñb(i)

Ñb(i)∑
j=0

qlm(j), (10)

where Ñb(i) is the number of neighbours including the particle
i itself. In this way, the first invariant bond order parameter is
defined as

ql(i) =

√√√
4π

2l + 1

l∑
m=−l

��q̄lm(i)��2, (11)

while the second one is defined as

wl(i) =

∑
m1+m2+m3=0

(
l l l
m1 m2 m3

)
qlm1

(i) qlm2
(i) qlm3

(i)(∑l
m=−l

���qlm(i)���
2
)3/2

, (12)

where the term in parentheses is the Wigner 3-j symbol.
The integers m1, m2, and m3 run from −l to l but only the
combination that meets the requirement m1 + m2 + m3 = 0.
Using l = 4 and l = 6, it is possible to establish a separa-
tion between body-centered-cubic (bcc), face-centered-cubic
(fcc), and hexagonal-close-packed (hcp) structures.54

III. RESULTS
A. Microscopic organization of the gels under shear

We start by showing the behavior of the stress tensor
under shear. To facilitate a comparison with experimental
results on colloidal gels, we focus on the case of LD simu-
lations, which take into account the presence of the solvent
in an effective way, although neglecting hydrodynamic inter-
actions. As discussed above, for several attractive arrested
states,22–24 two yielding mechanisms have been observed.
It is now interesting to see what happens in the present
case of equilibrium gels obtained by competing interactions.
The behaviour of the normalized stress tensor Σxzσ3/8kBT
is reported as a function of strain γ = γ̇t for several val-
ues of Pe. We find that only one yielding mechanism takes
place in our gel, confirming the results reported for depletion-
induced gels at a comparable packing fraction and attraction
strength.23 Similarly to the previous findings, the position of
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the maximum of the stress tensor, defining the yielding point
Σyield, is insensitive to shear rate.23,55 We also find a power
law dependence of the yield stress on the shear rate, i.e.,
Σyield ∝ Peδ . However, for depletion-induced gels at inter-
mediate φ, the power law exponent has been found to be
δ ∼ 0.5 in both simulations55 and experiments.23 On the
other hand, numerical simulations for the Derjaquin-Landau-
Verwey-Overbeek (DLVO) potential56 have found δ ∼ 0.56. We
find that for our model, the yield stress follows a power law
with an exponent δ ∼ 0.62 ± 0.01 [see the inset in Fig. 2(a)]. This
result suggests that there is a systematic change of δ with the
employed interaction potential between the colloids. Inter-
estingly for dense colloidal glasses, an almost constant value
of the stress overshoot with Pe was found.57 To provide an
interpretation of these findings, we refer to early theoretical
studies on polymers58 and colloidal gels,55 which reported a
link between δ and the fractal dimension df of the system, i.e.,

δ =
3−df

2 . Using this relationship, the fractal dimension would
decrease from ∼2.0 to ∼1.75 as we add the long-range elec-
trostatic repulsion to the short-range depletion one. This is
in agreement with direct estimates of the fractal dimensions
from assessment of the clusters in equilibrium,12 where a very

FIG. 2. Gel response to shear within LD simulations with ξ = 102 for different Pe:
(a) normalized stress Σxza3/kBT versus strain γ. Inset: stress overshoot Σyield as
a function of Pe. The black line is a power-law fit to the numerical data (symbols).
Strain dependence of (b) fraction of bonds f b (solid lines), fraction of unbroken
bonds f u (dashed lines), and (c) bond energy Eb, normalized to their values in the
absence of shear. The shaded areas indicate the strain region in which yielding
takes place.

low value of df ∼ 1.25 was found. It is plausible that this value
is slightly increased by the presence of the shear. Thus, from
this type of result, we can get an indirect estimate of the gel
structure from rheological measurements. It would be inter-
esting to test this relationship to systems with different fractal
dimensions. We may also speculate that an increase in δ can
be interpreted in terms of a stronger resistance to the flow of
the gel under shear at the structural level. This interpretation
is confirmed by comparing our results with those presented
in Ref. 35, where numerical simulations of a gel were per-
formed using a Morse potential with a minimum value of the
energy ∼6kBT, similarly to our case, reporting an exponent δ
≤ 0.5. In our model, the presence of the long-range repulsion
could possibly counteract the effect of the shear in breaking
bonds, inducing an increase in Fbond and thus making our gel
more resistant to shear flow, which is thereby reflected by an
increase in δ.

To deepen our microscopic understanding of the yielding
point, we monitor the fraction of bonds fb and the bond energy
Eb in Figs. 2(b) and 2(c) for the same Pe values. We find that
at yielding, the total number of bonds does not change sig-
nificantly, while the bond energy already starts to decrease.
Interestingly, if we separately monitor only the fraction of
unbroken bonds fu with respect to the zero-shear case, we
find no broken bonds until yielding. Thus, the gel network
remains essentially unaffected up to Σyield in agreement with
Refs. 23, 35, and 59. The decrease in the energy however might
indicate that bonds become more and more stretched under
the shear deformation, prior to eventual breakage. After the
yielding point, when the bond energy has already dropped
a significant amount, fu rapidly decreases until reaching a
steady state where basically none of the initial bonds are left
intact. However, new bonds appear and indeed fb reaches a
new plateau in the steady state. In all cases, the system is
found to form a new percolating network, whose structure
is very different from the initial gel state as we will show in
Sec. III D.

B. Anisotropy
From the microscopic point of view, the anisotropy

induced by the shear flow has been studied to understand
how the balance between Brownian motion and shear flow
can affect the microscopic structure for different systems.
We have thus studied the evolution of the anisotropy of our
gels by calculating Img−2

2 (r), for different Pe (changing both
γ̇ and ξ) in the LD simulations. We incidentally notice that,
for hard sphere systems studied within Brownian dynam-
ics, an inversion of the peak amplitudes in Img−2

2 (r)60 was
observed upon increasing Pe, while for low shear contribu-
tion, the compressional peak is more pronounced than the
extensional one, this situation was found to be reversed at
high shear. This was interpreted as a consequence of the
net contribution of the shear with respect to the Brownian
dynamics. At high Pe, the convective motion of hard spheres
increases and hence a larger anisotropy is found in the exten-
sional axis. For the current system, anisotropy results are
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FIG. 3. Shear-induced anisotropy Img−2
2 (r) for LD simulations with ξ = 102 at different (a) Pe ≈ 1.3 and (b) Pe ≈ 0.2 and with ξ = 10 at different (c) Pe ≈ 3 · 10−2 and (d)

Pe ≈ 2 · 10−2.

reported in Figs. 3(a) and 3(b) for ξ = 102 and in Figs. 3(c)
and 3(d) for ξ = 10. For each solvent condition, we have mon-
itored the evolution of anisotropy in the system and asso-
ciate it with the analysis of the stress and bonds reported
above, including the yielding manifestation up to the steady
state.

For ξ = 102, we find that the anisotropy starts to grow
already well before the yielding point (occurring for γ ∼ 10−1).
A characteristic two-peaked shape is observed, which is made
of a negative peak followed, at larger distances, by a posi-
tive one. These two peaks indicate the increase in anisotropy
along the compressional and extensional axis, respectively.31

Interestingly, the distance at which Img−2
2 (r) passes through

zero corresponds to the minimum rmin of the total interac-
tion potential. In addition, we observe that the positive peak
does not exceed the maximum bond distance rbond, showing
that this modification of the gel structure affects the bonds
between the particles and not larger distances. At yielding,
where still the network is intact but the maximum accumu-
lation of stress occurs, the induced anisotropy is also max-
imum. It is found that anisotropy at this point is able to
propagate at distances larger than the bond ones, affecting
the whole structure, as shown by additional peaks arising for
r > rbond. When the bonds finally start to break, after yielding,
the anisotropy also decreases and the peaks at larger distances
disappear. Interestingly, after this happens, Img−2

2 (r) shows a
long-range tail which is most evident in Figs. 3(a) and 3(b).
This tail could indicate that the dissipation of the anisotropy

does not happen instantaneously but occurs within a finite
time, in correspondence with the smooth decay of fb and fu
after the yielding point. Indeed, at larger strains, the tail dis-
appears. However, even in the steady state (γ & 10), a signifi-
cant amount of anisotropy still remains at the local level. The
reported behavior is enhanced for higher values of Pe, which
in general induce a larger amount of anisotropy in the sys-
tem.35 The behavior described for hard-sphere systems above
is not observed,60,61 probably due to the fact that our short-
range repulsion, although very steep, is not hard-sphere-like,
thus allowing for a moderate compression of the particles
themselves. This can be seen in the compressional peak mov-
ing at slightly smaller distances with increasing Pe. Indeed, a
similar feature was observed in the anisotropy of deformable
particles.51

On the other hand, we find remarkable differences in the
behavior of Img−2

2 (r) for Pe . 3 · 10−2, as shown in Figs. 3(c)
and 3(d). In this regime, the Brownian motion is much stronger
than the shear flow. We monitor this behavior for the lower
studied friction coefficient (ξ = 10) and find that, after the
yielding point, the extensional peak becomes much more pro-
nounced, while the compressional one tends to disappear. To
clarify the effects due to the competition between Brown-
ian dynamics and the shear flow, we compare the anisotropy
distribution for two systems having the same shear rate
γ̇ = 0.05 but different friction coefficients: ξ = 102 in Fig. 3(b)
and ξ = 10 in Fig. 3(d). It is clear that, tuning the solvent
properties at the same shear rate, we can manipulate the
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anisotropy induced in the system by the shear flow. While at
high Pe, both extension and compression of the bonds take
place, for low Pe, only the extensional axis grows. This fea-
ture, coupled to the lack of a clear yielding point (see Fig. 2),
indicates that the system is undergoing a restructuring pro-
cess. Under these conditions, the small perturbation acted
by the shear flow onto the system is enough to allow the
particles to reorganize towards a more ordered configura-
tion. Indeed, a fluid-to-crystal transition is observed at higher
strains, as shown in Sec. III C. On the other hand, at large
frictions (and hence higher Pe), the Brownian motion dom-
inates the effect of the shear and crystallization does not
occur, at least on the simulated time scales. Interestingly, a
recent study of a jammed suspension under steady shear51

reported a higher accumulation of particles along the com-
pression axes prior to crystallization, an opposite result to
the present case. However, in that system, particles interact
with a soft Hertzian repulsion and thus the high deformabil-
ity should be responsible for the observed behavior. Despite
the differences, this study shows that such a large asymme-
try of the two peaks of Img−2

2 (r) is a distinctive signature of
an incipient crystallization. It would be interesting to confirm
this feature in other studies, either numerical or experimental
ones.

C. Shear-induced crystallization
As anticipated in Sec. III B, we find that our gels

undergo crystallization when we perform LD simulations at
a low enough friction coefficient (ξ = 10). We have identi-
fied the important role of friction which, if too high, coun-
teracts the effect of shear and acts against ordering. To
further strengthen this point, we also perform MD simula-
tions, as described in Sec. II, where the solvent is absent,
which would thus mimic an atomic, rather than a colloidal,
system.

Crystallization is found when a sudden drop in the poten-
tial energy occurs for a given trajectory. To quantify the tran-
sition, we monitor the fraction of solid particles X and we
calculate the bond local order parameters in order to discrim-
inate between different crystal structures54,62 (see Sec. II for
details). We report the strain evolution of X for a few selected
shear conditions in Fig. 4(a) for both LD and MD simulations.
In order to quantify shear also in the case of MD, we refer to
the value of the shear rate γ̇ because in this case a Pe can-
not be defined. We find that crystallization occurs only in a
narrow region of shear rates, which are not too large to be
able to destroy the order and not too small in order to induce
a significant rearrangement. Thus for the small Pe difference
considered in Fig. 4(a), we find that the system sheared with
Pe ≈ 2 · 10−2 is able to crystallize, while the system with slightly
larger Pe ≈ 3 · 10−2 is not able to crystallize within the simu-
lated time window. However, an important point is that the
final crystal state is the same for both LD and MD simula-
tions. This is characterized by a predominant face-centered-
cubic (fcc) structure, as shown in Figs. 4(b.1) and 4(b.2) where
the bond orientational parameter w̄6 and w̄4 are reported. A
negative value of w̄6 can be used to discriminate a fcc

FIG. 4. (a) Number of solid-like particles X versus strain for LD simulations with
ξ = 10 at Pe ≈ 3 · 10−2 and Pe ≈ 2 · 10−2 and MD simulations with γ̇ = 0.25;
rotationally invariant bond order parameter distribution P(w̄4) (b.1) and P(w̄6)
(b.2) when the system crystallizes for LD and MD simulations shown in panel (a).

arrangement from a body-centered-cubic (bcc) one. How-
ever, the fcc structure is quite similar to the hexagonal-close-
packed (hcp) one in terms of w̄6. In order to discriminate
between the latter two crystal structures, one needs to con-
sider w̄4, which is predominantly negative for fcc. For even
longer simulation times, we find that the system acquires a
well-defined fcc crystal at γ ≥ 104. We could only reach this
long-time regime using MD simulations within our simulated
time window.

D. Mapping between equilibrium and steady
states under shear: Structure

Up to this point, we have investigated the micro-
scopic structure of the system under shear, quantifying the
anisotropy and detecting the onset of crystallization under
specific shear conditions. After the yielding point, the sys-
tem approaches a steady state whose microstructure will be
different depending on Pe or on the underlying microscopic
dynamics. In particular, we have compared three cases—the
absence of a solvent (MD) and two implicit solvents imple-
mented through LD at low viscosity (ξ = 10) and high viscosity
(ξ = 102), respectively—finding that the solvent can affect the
kinetics of the deformation of the initial structure induced
by the shear. It would thus be useful to have a way to com-
pare these three cases when shear conditions are equivalent
with respect to the underlying Brownian motion (or in the
absence of it). To this aim, we can use the equilibrium states
of the system as reference states and quantify the effect of the
employed shear in each case with respect to them. In particu-
lar, we build a correspondence to equilibrium states using the
potential energy as mapping observable. Thus, for any applied
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FIG. 5. (a) Mapping (γ̇,T) between equi-
librium and steady states via the poten-
tial energy per particle E/N in equilibrium
and steady states, the latter obtained
via MD simulations (circles), LD sim-
ulations with ξ = 10 (triangles) and
ξ = 102 (squares). The arrows highlight
the investigated corresponding states
(grey symbols). (b) Potential energy per
particle E/N for LD simulations as a func-
tion of Pe.

shear under MD and LD conditions, we consider the poten-
tial energy of the steady state and map it to the equilibrium
state with the same potential energy. In this way, we estab-
lish a shear rate-temperature connection linking steady states
obtained under different types of shear and equilibrium states.
The obtained mapping is represented in Fig. 5(a), where we
use γ̇ as mapping variable in order to also include the MD
simulations.

For each T in equilibrium, a set of corresponding steady
states arising from different simulation methods is defined by
different values of γ̇. The weaker is the effect of the solvent,
the higher is the shear rate corresponding to the same equilib-
rium state. To see whether the mapping is meaningful, we now
consider two sets of states labeled in Fig. 5(a) as Set I and Set
II, corresponding to the states in equilibrium with T = 0.24 and
T = 0.14, respectively, and we compare the structure of these
sets with their corresponding equilibrium states. In Fig. 6, we
report the static structure factors, calculated as defined in
Sec. II in equilibrium and under shear, for these two sets of
corresponding states. Remarkably, we find that the S(q) for all
steady states obtained under different shear conditions and
dynamics are superimposed onto each other within the statis-
tical uncertainty of the numerical data. This is a confirmation
of the efficiency of the mapping in connecting steady states
at different shear rates among themselves and with respect to
equilibrium. Thus if one wants to compare different shear con-
ditions, one needs to consider a different γ̇ in order to arrive
at a similar steady state structure.

In addition, Fig. 6 clearly shows the effect of shear on
the microscopic structure of the system. While for equilib-
rium states, a cluster peak is observed, extensively discussed
in the literature as a generic feature of competing interac-
tions, such a peak disappears in the presence of shear in
favour of a growing intensity of S(q) for q → 0. This allows
us to deduce that, in the steady state, the shear flow acts
essentially at large length scales, by screening the contribu-
tion of the long-range repulsion and enhancing the attrac-
tive interactions between the colloids as compared to the
equilibrium case. In this way, the shear drives the system
closer to phase separation and the presence of larger density

fluctuations with respect to equilibrium also helps crystalliza-
tion of the system. This is visible in the snapshots reported in
Fig. 6(b), where the inhomogeneity of the structure is evident
and confirms the findings of enhanced anisotropy after yield-
ing reported in Fig. 3(d) prior to crystallization. It is important
to notice that for steady states corresponding to lower T (not
shown), we find no growth of S(q) at small wavevectors and
consequently no crystallization. Finally, focusing on wavevec-
tors larger than the nearest-neighbour peak, we see that the

FIG. 6. Static structure factors S(q) for states with the same potential energy and
snapshots for MD simulations. Particles are coloured according to their number of
bonded neighbours #b as indicated in the top colour bar. Set I (a) and Set II (b)
correspond to the parameters indicated by the mapping shown in Fig. 5.
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shear has a much weaker effect, leaving almost unaltered the
local structure of the system. Hence, in our gels with compet-
ing interactions, shear essentially acts against the long-range
repulsion and is able to strengthen the attractive interactions.
It would be interesting to repeat this analysis for other types of
gels in order to highlight the different effect of shear in those
cases.

E. Comparing different steady states under shear
through the established mapping: Invariance
on Péclet number, but dependence
on microscopic dynamics

The established mapping not only allows us to identify
the effect of the shear on the structure of the system but also
allows us to compare the rheological response of correspond-
ing steady states. If the mapping is meaningful, this response
should also be identical. We also notice that, from the defini-
tion of the Péclet number [Eq. (2)], there are different possible
combinations of ξ and γ̇ that allow the same Pe value to be
obtained. In Fig. 5(b), the potential energy per particle E/N for
LD simulations at the two different values of ξ studied here is
shown as a function of Pe instead of the shear rate. Thus it is
evident that our mapping implies that state points with iden-
tical Pe also have the same potential energy, confirming that
it is only the balance between the shear rate and Brownian
motion that should determine the rheological response of the
system.

We now compare steady states obtained for LD simu-
lations with Pe ≈ 3 · 10−2 and varying (γ̇, ξ) combinations,
as highlighted in Fig. 5(a) with label Set II, where the steady
states have the same potential energy. In Fig. 7(a), we show
that steady states obtained under shear for the same Pe not
only possess an identical structure but also display identical
anisotropy distribution at all strain values. We confirm that
the same results also hold also for different sets of corre-
sponding states showing asymmetric features of Img−2

2 (r) as
in Fig. 3(d) (not shown). While this may seem like an obvious
result, it offers the possibility to vary independently the two
parameters in LD simulations (i.e., ξ and γ̇) in order to investi-
gate different Pe regimes. So, for example, in our system, while
using ξ = 10 and too high values of shear rates, the tempera-
ture does not remain constant, preventing us to explore high
values of Pe at this effective viscosity. However, building on
the mapping, one can equivalently explore higher values of Pe
by increasing ξ and using a smaller value of shear rate. Simi-
larly, for example, to study shear-induced crystallization may
require very long simulation times at high solvent viscosities
(and indeed we are not able to detect it within the duration
of our simulations). However, a proper balance of the choice
of γ̇ and ξ can be tailored for the specific needs of a given
situation, allowing to explore the parameter space in a much
more efficient way, without affecting the structure of the final
state.

We also find that the mapping does not hold when we
also consider MD simulations. Figure 7(a) also shows that
anisotropy is always higher in the absence of the solvent. This

FIG. 7. (a) Evolution of anisotropy Img−2
2 (r) at different values of strain γ for LD

simulations with ξ = 10 (triangles) and ξ = 102 (squares), as well as MD simula-
tions (circles), corresponding to Set II of Fig. 6. (b) Anisotropy in the steady state
for ξ = 102 for Set I and Set II state points of Fig. 6. Inset: Zoomed-in view for
r > rbond to highlight the presence of anisotropy even at intermediate length
scales.

indicates that the presence of the Brownian motion mitigates
the growth of the anisotropy and hence different rheological
response are observed when using MD and LD simulations.

Furthermore, in Fig. 7(b), we show the anisotropy persist-
ing also in the steady state for ξ = 102 for different values of
Pe, corresponding to Set I and Set II state points in Fig. 6. For
the larger Pe value, the number of bonds in the steady state
is small and the structure of the system is composed of many
small groups. On the other hand, for the smaller Pe, where the
system is closer to phase separation, the system is found in
a new gel state, which is able to maintain a large amount of
anisotropy, which propagates through the structure even well
beyond the bond distance.

To understand the full rheological response of our gel, we
also study the mechanical response versus strain for Set II and
again we focus on the role played by the underlying micro-
scopic dynamics. We plot in Fig. 8(a) the behavior of stress
versus strain which clearly shows that the two LD simulations
yield an identical behavior at large strains, while a dependence
on the effective viscosity ξ is observed for γ . 10−2, where the
effects of the Brownian dynamics balance the shear flow in
a different way. On the other hand, the MD simulations dis-
play a much larger accumulated stress, with a yielding point
that takes place at a different strain value, which is then fol-
lowed by an oscillation before reaching a steady state with a
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FIG. 8. Comparison of gel response under shear for LD simulations with ξ = 10
(green lines/triangles) and ξ = 102 (red lines/squares), as well as for MD simu-
lations (blue lines/circles), corresponding to Set II of Fig. 6: (a) normalized stress
versus strain. The two shaded areas highlight the strain regions in which yielding
takes place and the MD data show a bump. (b) Fraction of bonds f b (solid lines)
and fraction of unbroken bonds f u (dashed lines). (c) Bond energy Eb normalized
to their zero-shear values. (d) shows the potential energy per particle E/N.

stress larger than that found for LD simulations. To micro-
scopically compare the three different simulation methods, we
again consider the fraction of bonds and the fraction of unbro-
ken bonds versus strain, shown in Fig. 8(b), and we find that
these observables do not show a dependence on the shear
conditions and on the solvent effects at all strains. However,
the energy of the bonds reported in Fig. 8(c) does show sig-
nificant differences between the MD and LD simulations. In
particular, the MD data display an anticipated decrease in Eb,
associated with their own yielding point, followed by an oscil-
lation which reflects that observed in the stress. The long-
time limit of Eb in this case is different from that obtained in
LD simulations, despite the potential energy being the same
as imposed by our mapping and shown in Fig. 8(d). Thus,
we conclude that, as expected in the absence of the solvent,
the shear has a much stronger effect on the system: despite
having the same potential energy and structure, the spatial
configuration of the bonds is rather different as the stress
tensor and Eb show, indicating that the Brownian motion
acts as an additional relaxation mechanism against shear
flow.

F. Size effects
In this section, we investigate whether and how the size

of the system affects the results reported so far. The stress
versus strain curves are reported in Fig. 9 for three system

FIG. 9. Comparison of gel response under shear for LD simulations with ξ = 102

and two values of Pe (as indicated in the legends) at different system sizes N: (a)
normalized stress versus strain; (b) fraction of bonds f b (solid lines), fraction of
unbroken bonds f u (dashed lines); and (c) bond energy Eb, normalized to their
zero-shear values. Inset: Zoomed-in view of the low strain regime, 10−3 ≤ γ
≤ 10−1, to highlight that the bond energy shows oscillations before the yielding
point at Pe > 1; (d) anisotropy Img−2

2 (r) at the yielding point γ = 10−1.

sizes at two different values of Pe for LD simulations with
ξ = 102. We find that the curves are superimposed onto each
other at all investigated N, except for some small differences
at short times. Similarly, the quantities fb, fu, and Eb remain
unchanged in the stationary state as shown in Fig. 9(b). Inter-
estingly, in the transient regime, when the velocity profile
has not yet matched the imposed one, we find that the bond
energy slightly decreases on increasing N [Fig. 9(c)], while the
number of bonds remains constant. This occurs for Pe > 1 in a
smallγ window where shear flow acts on time scales compara-
ble to those of particle diffusion, thus influencing the behavior
of the system. In this regime, bonds start to stretch as indi-
cated by a decrease in Eb. However, on increasing the bond
distance, particles feel the presence of a repulsive shoulder
in their interaction, thanks to which Eb increases again as
shown in the inset of Fig. 9(c) where it forms a sort of oscil-
lation at small γ. Once the shear flow attains the imposed
velocity profile, shear effects occur at a shorter time scale
than the relaxation mechanisms and hence the bonds stretch
until they break. Such behaviour is more evident on increas-
ing the system size due to the larger signal coming from
bond stretching. The bond energy oscillations disappear for
Pe < 1, indicating that the shear flow does not affect
considerably particle dynamics but can be considered as a
perturbation of particle Brownian motion. The expression of
different relaxation mechanisms in the transient regime has
been recently reported in depletion gels.35 However, in that
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case, the oscillations in the bond energy were not reported.
Finally, we monitor the anisotropy distribution in [Fig. 9(d)]
at the yielding point. We find that there is a small increase
in anisotropy with N, but overall size effects are not very
pronounced and do not qualitatively change the observed
patterns. We also note that our results are also in quali-
tative agreement with the simulations performed on much
larger system sizes.32,35 Thus we can conclude that the results
obtained for N = 2000 particles are robust and qualitatively
representative of larger system sizes for the considered prop-
erties that can be considered “bulk” properties. Of course,
we may expect some size dependence for the microscopic
behavior and this will be addressed in future work.

IV. DISCUSSION AND CONCLUSIONS
In this work, we have investigated the rheological behav-

ior of gels under steady shear with different numerical
approaches. While several experimental and numerical stud-
ies have already addressed this problem for depletion-induced
gels, which are formed out-of-equilibrium via an arrested
spinodal decomposition, we have focused on equilibrium gels,
obtained via the competition of depletion attraction and elec-
trostatic repulsion. The main purpose of this work was thus to
understand how the response of gels under shear is affected
by the route by which the gel is obtained and hence how it
depends on the inter-particle potential between the particles.
To reach this goal, we have performed three different types of
simulations. Two sets of LD simulations were run for different
friction coefficients, tuning in this way the effective viscos-
ity of the implicit solvent. These were then compared to MD
simulations where the presence of the solvent is neglected.
In this way, we could compare conditions which can describe
Brownian colloidal motion with others which describe atomic
dynamics. The use of MD simulations in some cases is accept-
able also for colloidal systems, for example, when focusing
on the slow dynamics only,5 while under shear, the effect
of the solvent becomes relevant. Although LD simulations do
not take into account hydrodynamic interactions, they pro-
vide a more realistic approach than MD in order to compare
with experiments. It is fair to say that our work represents
one of the few examples providing a systematic compari-
son of the influence of microscopic dynamics under steady
shear.

We have calculated the stress tensor for our gels with
competing interactions, finding that they exhibit one yielding
point prior to reaching a liquid-like steady state (Fig. 2). The
strain at which the yielding point occurs is found to be inde-
pendent of Pe. These results are in agreement with depletion-
induced gels at comparable packing fractions and attraction
strengths.23 Similarly to these studies, the stress overshoot
displays a power-law dependence on the Péclet number, but
with an exponent that is higher than values obtained for deple-
tion gels in both experiments and numerical simulations. We
attribute this increment to a better resistance of the studied
type gel to shear flow, thanks to the long-range electrostatic
contribution in the colloid-colloid potential. These findings

suggest that the rheological response of a colloidal gel can
be systematically varied by changing the effective interparti-
cle interactions. Such a feature is very appealing for practical
applications and for achieving a fine control of the rheological
properties of a gel.

From the microscopic point of view, we have analysed the
effect of strain on the gel structure for different Pe. In agree-
ment with previous studies on different types of gels,33,35 we
find that the initial bonds forming the gel are deformed after
switching on the shear and start to break only after the yield-
ing point. However, they soon reorganize into a new network
structure, whose characteristics depend on the Péclet number
and also on the microscopic dynamics.

Also similarly to previous studies,31,34,35 we find that the
maximum anisotropy is reached at the yielding point. After
this point, the initial gel structure is lost due to the bond
breakage, thereby decreasing the amount of stored stress
and consequent anisotropy. At long times or large strains,
the gel approaches a steady state which maintains some
degrees of anisotropy at short length-scales.31,34 To quan-
tify anisotropy, several studies have reported the so-called
fabric tensor,33,35 even resolved along different directions.34

Other studies instead focus on the expansion of the pair
correlation function,31,32 including the present work. These
different observables provide similar amount of information
on the anisotropy, but the use of Img−2

2 (r) allows one also to
obtain spatial resolution. In general, Img−2

2 (r) is found to have
two roughly symmetric peaks, localized around the bond dis-
tance and of roughly maximum intensity at the yielding point.
The balance between compressional (negative) and exten-
sional (positive) peaks depends on the employed Pe as well as
on the specific potential interaction. In our system, this holds
for Pe > 10−1. For certain conditions, an asymmetric situation
is found, where a large positive peak is accompanied by an
almost absent negative peak. We find that this situation occurs
for Pe < 10−2 and we suggest that this feature is a precursor of
a fluid-to-crystal transition, which is obtained only in a nar-
row region of Pe and at low enough solvent friction (at least
within our simulation time window). Thus, the accumulation
of particles in the extensional axis Img−2

2 (r) seems to be a pre-
requisite for a transition from an amorphous to an ordered
structure. Conversely, in those cases where the asymmetry
is not found, crystallization is hampered because either the
small crystal nuclei are not able to support the deformation
induced by the shear flow or the used shear rate values are
not able to dominate over the underlying Brownian dynam-
ics. Interestingly, in Ref. 32, an increase in the extensional
peak is also found for low Pe. Differently, from previous stud-
ies on gels, our inter-particle potential includes a long-range
repulsion, which is found to affect the anisotropy at the yield-
ing point even at large length scales well beyond the bond
distance.

Finally we also note that, while in general at low strains,
the anisotropy only acts at the direct level of bonds, at the
yielding point, it also affects large length scales well beyond
the bond distance. The fact that the anisotropy is clearly
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observed also for r > rbond seems to be a distinctive feature of
the present work, where the presence of an additional long-
range Yukawa repulsion is responsible for the propagation
of the anisotropy at larger scales, differently for depletion-
like gels31,32 but in agreement with numerical simulations of
repulsive Yukawa glasses.50

To be able to connect the results obtained with differ-
ent types of simulations, we built on ideas borrowed from
the studies of the glass transition where states in equilib-
rium and in aging are connected through a time-temperature
relation. In a similar fashion, we consider here a mapping
between equilibrium and steady states under shear (so-called
corresponding states) by considering state points at different
γ̇ and T with the same potential energy (Fig. 5). This map-
ping confirms the intuitive expectation that, upon decreas-
ing the effects of the solvent, higher values of shear rates
are required in order to reach a similar steady state. We
find that the static structure factors of the examined corre-
sponding steady states are identical to each other (Fig. 6). In
particular, the cluster peak observed in equilibrium, which is
a distinctive feature of gels obtained by competing interac-
tions,9 is destroyed by the presence of the shear in favour
of the growth of S(q) for q → 0. This implies that the shear
flow acts at large length scales, screening out the contribu-
tion of the long-range repulsion and hence pushing the sys-
tem closer to phase separation. Interestingly, these results
are in agreement with those obtained by recent simulations
of depletion-induced gels in the presence of hydrodynamic
interactions.34 In addition, the mapping puts forward the
evidence that the response of the gel and the approach of
the steady state is controlled solely by Pe in LD simulations,
providing identical results upon varying solvent conditions
and shear rates. This confirms that the competition between
Brownian motion and shear flow is the key parameter to con-
trol the behavior of the gel under shear. However, when we
compare equal potential energy states under shear in the
absence of the solvent, we find a stronger effect of the shear
on the gel in terms of anisotropy and final steady state prop-
erties, signaling that the mapping does depend on the choice
of the microscopic dynamics. These results can be useful in
future simulation studies because they allow an independent
choice of solvent viscosity and shear rate, maintaining the
same Pe. This makes it possible to explore a wide range of
shear conditions without affecting the resulting steady states.
This is particularly valuable from the practical point of view
to extend investigations at high Pe, for example, ensuring
temperature stability, as well as to explore low Pe where
competing mechanisms induced by shear may favour crys-
tallization, as in the present case, or other underlying pro-
cesses. It will be interesting to extend the mapping to different
types of simulations where the solvent is treated in a more
accurate way including hydrodynamics effects, e.g., using
dissipative particle dynamics63,64 or multi-particle collision
dynamics.65,66

Finally, we have shown that our results are robust against
the variation of the system size. Thus, the modification of
the inter-particle interaction is able to provide a different

rheological response with respect to the widely studied deple-
tion gels. Our results call for experimental investigations prob-
ing the stress-strain behavior of gels with competing interac-
tions, still missing so far. In addition, it would be interesting
in the future to extend our study to different types of gels,
particularly equilibrium gels resulting for patchy or limited-
valence attractions6 for which rheological investigations are
scarce.
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