FNSNI lessons - Didattica - La Sapienza - Roma

Corso di Fisica Nucleare e Subnucleare I
Prof. Simonetta Gentile



Programma del corso e Bibliografia

Calendario e regole delle prove d'esame



Diario delle lezioni

Lecture 1a: slides.
  1. Introduction to the particle phyisics.
    • Production of elementary particles.
    • Detection of elementary particles.
  2. Units.
Lecture 1b: slides.
  1. Nuclear Physics: discoveries.
  2. Electron:
    • the discovery of electron (J.J.Thomson,1897)
    • the electron charge (Millikan).
Lecture 2a: slides.
  1. Rutherford scattering experiment.
Lecture 2b: slides.
  1. Cross section.
  2. Scattering process: elastic, inelastic.
  3. Absorption coefficient, attenuation lenght and free mean path.
  4. Luminosity. Luminosity in colliding beam. Integrated luminosity. Example: LHC.
  5. Differential cross section.
Lecture 3a: slides.
  1. Rutherford Scattering.
  2. Impact parameter and scattering angle.
  3. The cross section in the Rutherford Scattering.
Lecture 3b: slides.
  1. The building blocks of nucleus.
  2. The building blocks of the nucleus: The proton.
  3. The building blocks of the nucleus: The neutron.
Lecture 4a: slides.
  1. Energy deposition in media.
  2. Energy loss by ionization.
  3. Energy loss for electrons and positrons.
  4. Energy loss through bremmstrahlung.
  5. Multiple scattering.
  6. Cherenkov effect.
Lecture 4b: slides.
  1. Interactions of photons with matter.
  2. Photoelectric effect.
  3. Compton scattering.
  4. Pair production.
  5. Electromagnetic shower.
Lecture 5a: slides.
  1. Interactions of hadrons with matter.
Lecture 5b: slides.
  1. Ionization detectors.
    • Operational regions of ionization detectors: recombination, proportional, Geiger-Müller region.
  2. Scintillation detectors.
  3. Cherenkov detectors.
  4. Calorimeters.
  5. Semiconductors detectors.
  6. Magnetic spectrometer.
Lecture 6a: slides.
  1. Cosmic Rays.
  2. Positron.
  3. The muon and pion.
  4. Strangeness.
  5. Antiproton.
  6. Neutrinos.
  7. Weak interaction.
  8. τ lepton.
  9. ντ lepton.
Lecture 6b: slides.
  1. Accelerators.
  2. Cyclotron.
  3. Synchrocyclotron.
  4. Synchrotron.
  5. Fixed target accelerator and Colliders.
Lecture 7a: slides.
  1. Elementary particle.
  2. Quantum numbers.
    • Baryon number.
    • Lepton number.
    • Strangeness.
    • Isospin.
    • Gell-Mann-Nishijima relation.
    • Violation of quantum numbers.
  3. Introduction to Standard Model of elementary particles.
    Lecture 8a: slides.
    1. Symmetries and invariances
    2. Discrete Symmetries
      • Parity
      • Charge Conjugation
      • Time Reversal
    3. Parity Violation
    4. CP, CPT and CP Violation
      • CPT theorem
    Lecture 9a: slides.
    1. Nuclear Phenomenolgy
    2. Properties of Nuclei
    Lecture 9b: slides.
    1. Nuclear Models
    2. Liquid Drop Model
    3. Fermi Model
    4. Shell Model
    Lecture 9c: slides.
    1. Nuclear Radiation
      • Alpha decay
      • Tunnel effect
      • Beta decay
      • Gamma Decay
      • Radioactivity and lifetime
      • Natural Radioactivity and Radioactive Dating
    Lecture 9d: slides.
    1. Applications of Nuclear Physics
    2. Nuclear Fission
      • Uranium fission
    3. Nuclear Fusion





    Roma,