A1. Reminder of basic formulae

Let us start reminding the well known binomial and Poisson distributions, taken verbatim from Ref. [13], just to introduce the notation used in this note.
Binomial distribution

$X\sim$   Binom$(n,p)$ (hereafter “$\sim$” stands for “follows”); Binom$(n,p)$ stands for binomial with parameters $n$ and $p$:

$\displaystyle f(x\,\vert\,n,p) =
\frac{n!}{(n-x)!\,x!}\cdot p^x\cdot (1-p)^{n-x...
...\le p \le 1 \\
x = 0, 1, \ldots, n \end{array}\right.\,.
%\label{eq:binomial}
$    

Expected value, standard deviation and variation coefficient $[$  $v\equiv\sigma(X)/$E$(X)$ $]$:
E$\displaystyle (X)$ $\displaystyle =$ $\displaystyle n\cdot p$  
$\displaystyle \sigma(X)$ $\displaystyle =$ $\displaystyle \sqrt{n\cdot p\cdot (1-p)}$  
$\displaystyle v$ $\displaystyle =$ $\displaystyle \frac{\sqrt{n\cdot p\cdot (1-p)}}{n\cdot p} \propto \frac{1}{\sqrt{n}}\, .$  



Poisson distribution

$X\sim$   Poisson$(\lambda)$:

$\displaystyle f(x\,\vert\,\lambda)=\frac{\lambda^x}{x!}\cdot e^{-\lambda}
\hspa...
...
x = 0, 1, \ldots, \infty\\
\end{array} \right.\,.
% \label{eq:poisson_distr}
$    

Expected value, standard deviation and variation coefficient
E$\displaystyle (X)$ $\displaystyle =$ $\displaystyle \lambda$  
$\displaystyle \sigma(X)$ $\displaystyle =$ $\displaystyle \sqrt{\lambda}$  
$\displaystyle v$ $\displaystyle =$ $\displaystyle {1}/{\sqrt{\lambda}}.$  

Binomial $\rightarrow$ Poisson

Binom$\displaystyle (n,p)
\xrightarrow
[\begin{array}{l}n\rightarrow \infty \\
p\rightarrow 0 \\
(n\cdot p = \lambda)\end{array}]{}
{\mbox{Poisson}}(\lambda) \,.
$