The MCMC based pdf's of
are plotted in Fig.
with smooth curves showing the profile of the histograms
of the
values in the chains.
Usually, when inferring physical quantities,
the preference goes to the mean and the
standard deviation (the latter being
related to the concept of standard uncertainty [14])
because of rather general
probability theory theorems
which make their use convenient for further evaluations
(`propagations', as we shall also see in Sec. ).
Other ways to summarize with just a couple of
numbers a probability distribution are intervals which contain
the uncertain value of the variable of interest at a given probability level
(credible interval). We report then in
Tab.
the 95% central credible interval 7evaluated from the
MCMC chains as well as the 90% `right side credible interval'.
Other useful summaries, depending on the problem of interest,
can be the most probable value of the distribution (mode) and the
median, i.e. the value that divides the possible values
into two equally probable intervals.
As we have stated above, the modes of the MCMC based pdf's
coincides with the values reported as `efficacy value' in
Tab.
, which contains
also what we have generically indicated as 95% `uncertainty interval',
in form of credible interval for Pfizer
and confidence interval for the other
two companies.8
The MCMC also provides results for the other
`unobserved' nodes of the causal model, in our case and
. We refrain from quoting results on the `assault probability',
because they could easily be misunderstood, as they strongly
depend, contrary to
, on the values of
and
,
being
a catch-all quantity embedding several
real life variables, including the virus prevalence.
We have however checked that our main results on
are stable against
the (simultaneous) variations of
and
by orders of magnitude
(thus implying similar large variations of
).9
We give, instead,
the results concerning that we expect to be around
. We get, in fact, respectively for Moderna-1, Moderna-2, Pfizer,
AstraZeneca (LDSD) and AstraZeneca (SDSD) the following values:
,
,
,
and
(note that the standard uncertainty
is not simply the root square of
, as a rule of thumb would suggest).