Michele Monteferrante's Publications

  • PDF
  • Print
  • E-mail
  • A. Di Carlo, M. Monteferrante, P. Podio-Guidugli, V. Sansalone, L. Teresi: How (and why) twisting cycles make individual MWCNTs stiffer. In: Molecular Nanostructures (Proc. IWEPNM 2004; H. Kuzmany et al., eds.), pp 355-358, American Institute of Physics, Melville, NY, 2004.

  • M. Monteferrante, S. Bonella, S. Meloni, E. Vanden Eijnden, and G. Cic- cotti: Calculations of free energy barriers for local mechanisms of hydrogen diffusion in alanates, Scient. Model. and Simul.,15, 187, (2008).

  • M. Monteferrante, S. Bonella, S. Meloni, and G. Ciccotti: Modified single sweep method for reconstructing free energy landscapes, Mol.Sim., 35, 1116, (2009).

  • S. Bonella, M. Monteferrante, C. Pierleoni, and G. Ciccotti: Path integral based calculations of symmetrized time correlation functions. I, J. Chem. Phys. 133, 164104 (2010).

  • S. Bonella, M. Monteferrante, C. Pierleoni, and G. Ciccotti: Path integral based calculations of symmetrized time correlation functions. II, J. Chem. Phys. 133, 164105 (2010).

  • M. Monteferrante, S. Bonella, and G. Ciccotti: Short range hydrogen diffusion in Na3AlH6, Phys. Chem. Chem. Phys. 13, 10546 (2011).

  • M. Monteferrante, S. Bonella, and G. Ciccotti: Linearized symmetrized quantum time correlation functions calculation via phase pre-averaging, Mol. Phys. 109, 3015 (2011).

  • A. Poma, M. Monteferrante, S. Bonella, and G. Ciccotti: Quantum free energy barrier for hydrogen vacancy diffusion in Na3AlH6, Phys. Chem. Chem. Phys. 14, 15458 (2012).

  • M. Monteferrante, S. Bonella, and G. Ciccotti: Quantum dynamical struc- ture factor of liquid neon via a quasi classical symmetrized method, J. Chem. Phys. 138, 54118 (2013).

  • J. Beutier, M. Monteferrante, S. Bonella, R. Vuilleumier, G. Ciccotti: Gas phase infrared spectra via the phase integration quasi-classical method, Mol. Sim. 40, 196 (2014)

  • F. Gentile, M. Monteferrante, L. Chiodo, A. Toma, M.L. Coluccio, G. Ciccotti, E. Di Fabrizio Electroless formation of silver nanoaggregates: an experimental and molecular dynamics approach, Mol. Phy.112 (9-10), 1375-1388 (2014).

 

 

We use cookies to improve our website and your experience when using it. Cookies used for the essential operation of the site have already been set. To find out more about the cookies we use and how to delete them, see our privacy policy.

I accept cookies from this site.

EU Cookie Directive Module Information