next up previous
Next: Inferring and Up: Poisson background on the Previous: Poisson background on the

Inferring $p_s$

If priors are uniform then, Eq. (41) becomes
$\displaystyle \hspace{-6.0mm}f(p_s\,\vert\,x,\,n,\,\lambda_,\,p_b)$ $\textstyle \propto$ $\displaystyle \sum_{n_s,\,n_b} f_{2{\cal B}}(x\,\vert\,n_s,\,p_s\,n_b,\,p_b)
\, f(n_b\,\vert\,{\cal P}_{\lambda_b})\,\delta_{n,\,n_s+n_b}\,.$ (44)

Figure 10 gives the result for $x=9$, $n=12$, and assuming several hypothesis for $\lambda_b$ and $p_b$.
Figure: Inference about $p_s$ for $n=12$ and $x=9$, depending on the expected background [$\lambda _b=0$, 1, 2, 4, 6, 8, 10, 14, as (possibly) indicated by the number above the lines]. The three plots are obtained by three different hypotheses of $p_b$.
\begin{figure}\begin{center}
\begin{tabular}{c}
\epsfig{file=bin_back_n12_x9_lb0...
...0_10_pb095.eps,clip=,width=0.975\linewidth}\end{tabular}\end{center}\end{figure}


next up previous
Next: Inferring and Up: Poisson background on the Previous: Poisson background on the
Giulio D'Agostini 2004-12-13