The proposed Bayesian solutions to cure the troubles
produced by the usual treatment of
asymmetric uncertainties
is to step up from approximated methods to the
more general ones (see e.g. Ref. [3],
in particular the top down approximation
diagram of Fig. 2.2).
In this paper we shall see, for example,
how and minus log-likelihood fit `rules'
can be derived from the Bayesian inference formulae
as approximated methods and what to
do when the underlying conditions do not hold.
We shall encounter a similar situation regarding
standard formulae to propagate uncertainty.
Some of the issues addressed here and in Refs. [2] and [3] have been recently brought to our attention by Roger Barlow [6], who proposes frequentistic ways out. Michael Schmelling had also addressed questions related to `asymmetric errors', particularly related to the issue of weighted averages [7]. The reader is encouraged to read also these references to form his/her idea about the spotted problems and the proposed solutions.
In Sec. 2 the issue of propagation of uncertainty is briefly reviewed at an elementary level (just focusing on the sum of uncertain independent variables - i.e. no correlations considered) though taking into account asymmetry in probability density functions (p.d.f.) of the input quantities. In this way we understand what `might have been done' (we are rarely in the positions to exactly know ``what has been done'') by the authors who publish asymmetric results and what is the danger of improper use of such a published `best value' - as is - in subsequent analyses. Then, Sec. 3 we shall see in where asymmetric uncertainties stem from and what to do in order to overcome their potential troubles. This will be done in an exact way and, whenever is possible, in an approximated way. Some rules of thumb to roughly recover sensible probabilistic quantities (expected value and standard deviation) from results published with asymmetric uncertainties will be given in Sec. 4. Finally, some conclusions will be drawn.