Publications

2024

  • N. D. Pasquale, R. Davidchack, and L. Rovigatti. Cleaving: a lammps package to compute surface free energies. Journal of Open Source Software, 9(94):5886, 2024. doi:10.21105/joss.05886.
    [BibTeX▼]

2023

  • L. Rovigatti and F. Sciortino. Entropy-driven phase behavior of associative polymer networks. SciPost Phys., 15:163, 2023. doi:10.21468/SciPostPhys.15.4.163.
    [BibTeX▼]
  • N. Di Pasquale, T. Hudson, M. Icardi, L. Rovigatti, and M. Spinaci. A systematic analysis of the memory term in coarse-grained models: the case of the markovian approximation. European Journal of Applied Mathematics, 34(2):326–345, 2023. doi:10.1017/S0956792522000158.
    [abstract▼] [BibTeX▼]
  • V. Sorichetti, A. Ninarello, J. Ruiz-Franco, V. Hugouvieux, E. Zaccarelli, C. Micheletti, W. Kob, and L. Rovigatti. Structure and elasticity of model disordered, polydisperse, and defect-free polymer networks. Journal of Chemical Physics, 158(7):074905, 2023. doi:10.1063/5.0134271.
    [abstract▼] [BibTeX▼]
  • J.P.K. Doye, H. Fowler, D. Prešern, J. Bohlin, L. Rovigatti, F. Romano, P. Šulc, C.K. Wong, A.A. Louis, J.S. Schreck, M.C. Engel, M. Matthies, E. Benson, E. Poppleton, and B.E.K. Snodin. The oxdna coarse-grained model as a tool to simulate dna origami. Methods in Molecular Biology, 2639:93–112, 2023. doi:10.1007/978-1-0716-3028-0_6.
    [abstract▼] [BibTeX▼]
  • E. Poppleton, M. Matthies, D. Mandal, F. Romano, P. Šulc, and L. Rovigatti. Oxdna: coarse-grained simulations of nucleic acids made simple. Journal of Open Source Software, 8(81):4693, 2023.
    [BibTeX▼]

2022

  • L. Rovigatti, J. Russo, F. Romano, M. Matthies, L. Kroc, and P. Šulc. A simple solution to the problem of self-assembling cubic diamond crystals. Nanoscale, 14(38):14268–14275, 2022. doi:10.1039/d2nr03533b.
    [abstract▼] [BibTeX▼]
  • J. Russo, F. Romano, L. Kroc, F. Sciortino, L. Rovigatti, and P. Sulc. Sat-assembly: a new approach for designing self-assembling systems. Journal of Physics Condensed Matter, 34(35):354002, 2022. doi:10.1088/1361-648X/ac5479.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti and F. Sciortino. Designing enhanced entropy binding in single-chain nanoparticles. Physical Review Letters, 129(4):047801, 2022. doi:10.1103/PhysRevLett.129.047801.
    [abstract▼] [BibTeX▼]

2021

  • S. Biagi, L. Rovigatti, M. Abbasi, L. Bureau, F. Sciortino, and C. Misbah. Hydrodynamic instability and flow reduction in polymer brush coated channels. Soft Matter, 17(40):9235–9245, 2021. doi:10.1039/d1sm00638j.
    [abstract▼] [BibTeX▼]
  • J. Tauber, L. Rovigatti, S. Dussi, and J. van der Gucht. Sharing the load: stress redistribution governs fracture of polymer double networks. Macromolecules, 54(18):8563–8574, 2021. doi:10.1021/acs.macromol.1c01275.
    [abstract▼] [BibTeX▼]
  • G. Del Monte, D. Truzzolillo, F. Camerin, A. Ninarello, E. Chauveau, L. Tavagnacco, N. Gnan, L. Rovigatti, S. Sennato, and E. Zaccarelli. Two-step deswelling in the volume phase transition of thermoresponsive microgels. Proceedings of the National Academy of Sciences of the United States of America, 118(37):e2109560118, 2021. doi:10.1073/pnas.2109560118.
    [abstract▼] [BibTeX▼]
  • J. Vialetto, F. Camerin, F. Grillo, S.N. Ramakrishna, L. Rovigatti, E. Zaccarelli, and L. Isa. Effect of internal architecture on the assembly of soft particles at fluid interfaces. ACS Nano, 15(8):13105–13117, 2021. doi:10.1021/acsnano.1c02486.
    [abstract▼] [BibTeX▼]
  • M. Formanek, L. Rovigatti, E. Zaccarelli, F. Sciortino, and A.J. Moreno. Gel formation in reversibly cross-linking polymers. Macromolecules, 54(14):6613–6627, 2021. doi:10.1021/acs.macromol.0c02670.
    [abstract▼] [BibTeX▼]
  • E. Poppleton, R. Romero, A. Mallya, L. Rovigatti, and P. Šulc. Oxdna.org: a public webserver for coarse-grained simulations of dna and rna nanostructures. Nucleic Acids Research, 49(W1):W491–W498, 2021. doi:10.1093/nar/gkab324.
    [abstract▼] [BibTeX▼]
  • A. Sengar, T.E. Ouldridge, O. Henrich, L. Rovigatti, and P. Šulc. A primer on the oxdna model of dna: when to use it, how to simulate it and how to interpret the results. Frontiers in Molecular Biosciences, 8:693710, 2021. doi:10.3389/fmolb.2021.693710.
    [abstract▼] [BibTeX▼]
  • V. Sorichetti, A. Ninarello, J.M. Ruiz-Franco, V. Hugouvieux, W. Kob, E. Zaccarelli, and L. Rovigatti. Effect of chain polydispersity on the elasticity of disordered polymer networks. Macromolecules, 54(8):3769–3779, 2021. doi:10.1021/acs.macromol.1c00176.
    [abstract▼] [BibTeX▼]

2020

  • I.E. Ventura Rosales, L. Rovigatti, E. Bianchi, C.N. Likos, and E. Locatelli. Shape control of soft patchy nanoparticles under confinement. Nanoscale, 12(41):21188–21197, 2020. doi:10.1039/d0nr05058j.
    [abstract▼] [BibTeX▼]
  • F. Camerin, N. Gnan, J. Ruiz-Franco, A. Ninarello, L. Rovigatti, and E. Zaccarelli. Microgels at interfaces behave as 2d elastic particles featuring reentrant dynamics. Physical Review X, 10(3):031012, 2020. doi:10.1103/PhysRevX.10.031012.
    [abstract▼] [BibTeX▼]
  • M. Heidenreich, J.M. Georgeson, E. Locatelli, L. Rovigatti, S.K. Nandi, A. Steinberg, Y. Nadav, E. Shimoni, S.A. Safran, J.P.K. Doye, and E.D. Levy. Designer protein assemblies with tunable phase diagrams in living cells. Nature Chemical Biology, 16(9):939–945, 2020. doi:10.1038/s41589-020-0576-z.
    [abstract▼] [BibTeX▼]
  • G. Del Monte, F. Camerin, A. Ninarello, N. Gnan, L. Rovigatti, and E. Zaccarelli. Charge affinity and solvent effects in numerical simulations of ionic microgels. Journal of Physics Condensed Matter, 33(8):084001, 2020. doi:10.1088/1361-648X/abc4cb.
    [abstract▼] [BibTeX▼]

2019

  • A. Suma, E. Poppleton, M. Matthies, P. Šulc, F. Romano, A.A. Louis, J.P.K. Doye, C. Micheletti, and L. Rovigatti. Tacoxdna: a user-friendly web server for simulations of complex dna structures, from single strands to origami. Journal of Computational Chemistry, 40(29):2586–2595, 2019. doi:10.1002/jcc.26029.
    [abstract▼] [BibTeX▼]
  • A. Ninarello, J.J. Crassous, D. Paloli, F. Camerin, N. Gnan, L. Rovigatti, P. Schurtenberger, and E. Zaccarelli. Modeling microgels with a controlled structure across the volume phase transition. Macromolecules, 52(20):7584–7592, 2019. doi:10.1021/acs.macromol.9b01122.
    [abstract▼] [BibTeX▼]
  • P.H. Handle, L. Rovigatti, and F. Sciortino. Q-independent slow dynamics in atomic and molecular systems. Physical Review Letters, 122(17):175501, 2019. doi:10.1103/PhysRevLett.122.175501.
    [abstract▼] [BibTeX▼]
  • F. Camerin, M.Á. Fernández-Rodríguez, L. Rovigatti, M.-N. Antonopoulou, N. Gnan, A. Ninarello, L. Isa, and E. Zaccarelli. Microgels adsorbed at liquid-liquid interfaces: a joint numerical and experimental study. ACS Nano, 13(4):4548–4559, 2019. doi:10.1021/acsnano.9b00390.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, N. Gnan, A. Ninarello, and E. Zaccarelli. Connecting elasticity and effective interactions of neutral microgels: the validity of the hertzian model. Macromolecules, 52(13):4895–4906, 2019. doi:10.1021/acs.macromol.9b00099.
    [abstract▼] [BibTeX▼]
  • G. Del Monte, A. Ninarello, F. Camerin, L. Rovigatti, N. Gnan, and E. Zaccarelli. Numerical insights on ionic microgels: structure and swelling behaviour. Soft Matter, 15(40):8113–8128, 2019. doi:10.1039/c9sm01253b.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, N. Gnan, L. Tavagnacco, A.J. Moreno, and E. Zaccarelli. Numerical modelling of non-ionic microgels: an overview. Soft Matter, 15(6):1108–1119, 2019. doi:10.1039/c8sm02089b.
    [abstract▼] [BibTeX▼]

2018

  • M.J. Bergman, N. Gnan, M. Obiols-Rabasa, J.-M. Meijer, L. Rovigatti, E. Zaccarelli, and P. Schurtenberger. A new look at effective interactions between microgel particles. Nature Communications, 9(1):5039, 2018. doi:10.1038/s41467-018-07332-5.
    [abstract▼] [BibTeX▼]
  • F. Camerin, N. Gnan, L. Rovigatti, and E. Zaccarelli. Modelling realistic microgels in an explicit solvent. Scientific Reports, 8(1):14426, 2018. doi:10.1038/s41598-018-32642-5.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, F. Romano, and J. Russo. Topical issue on advances in computational methods for soft matter systems. European Physical Journal E, 41(8):98, 2018. doi:10.1140/epje/i2018-11695-6.
    [BibTeX▼]
  • M.C. Engel, D.M. Smith, M.A. Jobst, M. Sajfutdinow, T. Liedl, F. Romano, L. Rovigatti, A.A. Louis, and J.P.K. Doye. Force-induced unravelling of dna origami. ACS Nano, 12(7):6734–6747, 2018. doi:10.1021/acsnano.8b01844.
    [abstract▼] [BibTeX▼]
  • J. Ruiz-Franco, L. Rovigatti, and E. Zaccarelli. On the effect of the thermostat in non-equilibrium molecular dynamics simulations. European Physical Journal E, 41(7):80, 2018. doi:10.1140/epje/i2018-11689-4.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, J. Russo, and F. Romano. How to simulate patchy particles⋆. European Physical Journal E, 41(5):59, 2018. doi:10.1140/epje/i2018-11667-x.
    [abstract▼] [BibTeX▼]
  • E. Locatelli and L. Rovigatti. An accurate estimate of the free energy and phase diagram of all-dna bulk fluids. Polymers, 10(4):447, 2018. doi:10.3390/polym10040447.
    [abstract▼] [BibTeX▼]
  • F. Romano and L. Rovigatti. A nucleotide-level computational approach to DNA-based materials. 2018. doi:10.1007/978-3-319-71578-0_3.
    [BibTeX▼]
  • L. Rovigatti, G. Nava, T. Bellini, and F. Sciortino. Self-dynamics and collective swap-driven dynamics in a particle model for vitrimers. Macromolecules, 51(3):1232–1241, 2018. doi:10.1021/acs.macromol.7b02186.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, N. Gnan, and E. Zaccarelli. Internal structure and swelling behaviour of in silico microgel particles. Journal of Physics Condensed Matter, 30(4):044001, 2018. doi:10.1088/1361-648X/aaa0f4.
    [abstract▼] [BibTeX▼]

2017

  • C. Cardelli, V. Bianco, L. Rovigatti, F. Nerattini, L. Tubiana, C. Dellago, and I. Coluzza. The role of directional interactions in the designability of generalized heteropolymers. Scientific Reports, 7(1):4986, 2017. doi:10.1038/s41598-017-04720-7.
    [abstract▼] [BibTeX▼]
  • N. Gnan, L. Rovigatti, M. Bergman, and E. Zaccarelli. In silico synthesis of microgel particles. Macromolecules, 50(21):8777–8786, 2017. doi:10.1021/acs.macromol.7b01600.
    [abstract▼] [BibTeX▼]
  • I. C. Gârlea, E. Bianchi, B. Capone, L. Rovigatti, and C. N. Likos. Hierarchical self-organization of soft patchy nanoparticles into morphologically diverse aggregates. Current Opinion in Colloid and Interface Science, 30:1–7, 2017. doi:10.1016/j.cocis.2017.03.008.
    [abstract▼] [BibTeX▼]
  • E. Locatelli, P.H. Handle, C.N. Likos, F. Sciortino, and L. Rovigatti. Condensation and demixing in solutions of dna nanostars and their mixtures. ACS Nano, 11(2):2094–2102, 2017. doi:10.1021/acsnano.6b08287.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, V. Bianco, J.M. Tavares, and F. Sciortino. Communication: re-entrant limits of stability of the liquid phase and the speedy scenario in colloidal model systems. Journal of Chemical Physics, 146(4):041103, 2017. doi:10.1063/1.4974830.
    [abstract▼] [BibTeX▼]
  • M. Ronti, L. Rovigatti, J.M. Tavares, A.O. Ivanov, S.S. Kantorovich, and F. Sciortino. Free energy calculations for rings and chains formed by dipolar hard spheres. Soft Matter, 13(43):7870–7878, 2017. doi:10.1039/c7sm01692a.
    [abstract▼] [BibTeX▼]
  • E. Bianchi, B. Capone, I. Coluzza, L. Rovigatti, and P.D.J. Van Oostrum. Limiting the valence: advancements and new perspectives on patchy colloids, soft functionalized nanoparticles and biomolecules. Physical Chemistry Chemical Physics, 19(30):19847–19868, 2017. doi:10.1039/c7cp03149a.
    [abstract▼] [BibTeX▼]
  • S. Roldán-Vargas, L. Rovigatti, and F. Sciortino. Connectivity, dynamics, and structure in a tetrahedral network liquid. Soft Matter, 13(2):514–530, 2017. doi:10.1039/c6sm02282k.
    [abstract▼] [BibTeX▼]

2016

  • J. Fernandez-Castanon, F. Bomboi, L. Rovigatti, M. Zanatta, A. Paciaroni, L. Comez, L. Porcar, C.J. Jafta, G.C. Fadda, T. Bellini, and F. Sciortino. Small-angle neutron scattering and molecular dynamics structural study of gelling dna nanostars. Journal of Chemical Physics, 145(8):084910, 2016. doi:10.1063/1.4961398.
    [abstract▼] [BibTeX▼]
  • N.A. Mahynski, L. Rovigatti, C.N. Likos, and A.Z. Panagiotopoulos. Bottom-up colloidal crystal assembly with a twist. ACS Nano, 10(5):5459–5467, 2016. doi:10.1021/acsnano.6b01854.
    [abstract▼] [BibTeX▼]
  • S. Biagi, L. Rovigatti, F. Sciortino, and C. Misbah. Surface wave excitations and backflow effect over dense polymer brushes. Scientific Reports, 6:22257, 2016. doi:10.1038/srep22257.
    [abstract▼] [BibTeX▼]
  • B.E.K. Snodin, F. Romano, L. Rovigatti, T.E. Ouldridge, A.A. Louis, and J.P.K. Doye. Direct simulation of the self-assembly of a small dna origami. ACS Nano, 10(2):1724–1737, 2016. doi:10.1021/acsnano.5b05865.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, B. Capone, and C.N. Likos. Soft self-assembled nanoparticles with temperature-dependent properties. Nanoscale, 8(6):3288–3295, 2016. doi:10.1039/c5nr04661k.
    [abstract▼] [BibTeX▼]

2015

  • L. Rovigatti, P. Šulc, I.Z. Reguly, and F. Romano. A comparison between parallelization approaches in molecular dynamics simulations on gpus. Journal of Computational Chemistry, 36(1):1–8, 2015. doi:10.1002/jcc.23763.
    [abstract▼] [BibTeX▼]
  • S.S. Kantorovich, A.O. Ivanov, L. Rovigatti, J.M. Tavares, and F. Sciortino. Temperature-induced structural transitions in self-assembling magnetic nanocolloids. Physical Chemistry Chemical Physics, 17(25):16601–16608, 2015. doi:10.1039/c5cp01558h.
    [abstract▼] [BibTeX▼]
  • A.O. Ivanov, S.S. Kantorovich, L. Rovigatti, J.M. Tavares, and F. Sciortino. Low temperature structural transitions in dipolar hard spheres: the influence on magnetic properties. Journal of Magnetism and Magnetic Materials, 383:272–276, 2015. doi:10.1016/j.jmmm.2014.10.013.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, N. Gnan, A. Parola, and E. Zaccarelli. How soft repulsion enhances the depletion mechanism. Soft Matter, 11(4):692–700, 2015. doi:10.1039/c4sm02218a.
    [abstract▼] [BibTeX▼]

2014

  • L. Rovigatti, F. Smallenburg, F. Romano, and F. Sciortino. Gels of dna nanostars never crystallize. ACS Nano, 8(4):3567–3574, 2014. doi:10.1021/nn501138w.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, F. Bomboi, and F. Sciortino. Accurate phase diagram of tetravalent dna nanostars. Journal of Chemical Physics, 140(15):154903, 2014. doi:10.1063/1.4870467.
    [abstract▼] [BibTeX▼]

2013

  • J.P.K. Doye, T.E. Ouldridge, A.A. Louis, F. Romano, P. Šulc, C. Matek, B.E.K. Snodin, L. Rovigatti, J.S. Schreck, R.M. Harrison, and W.P.J. Smith. Coarse-graining dna for simulations of dna nanotechnology. Physical Chemistry Chemical Physics, 15(47):20395–20414, 2013. doi:10.1039/c3cp53545b.
    [abstract▼] [BibTeX▼]
  • S. Dussi, L. Rovigatti, and F. Sciortino. On the gas-liquid phase separation and the self-assembly of charged soft dumbbells. Molecular Physics, 111(22-23):3608–3617, 2013. doi:10.1080/00268976.2013.838315.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, J.M. Tavares, and F. Sciortino. Self-assembly in chains, rings, and branches: a single component system with two critical points. Physical Review Letters, 111(16):168302, 2013. doi:10.1103/PhysRevLett.111.168302.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, S. Kantorovich, A.O. Ivanov, J.M. Tavares, and F. Sciortino. Branching points in the low-temperature dipolar hard sphere fluid. Journal of Chemical Physics, 139(13):134901, 2013. doi:10.1063/1.4821935.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, D. De Las Heras, J.M. Tavares, M.M. Telo Da Gama, and F. Sciortino. Computing the phase diagram of binary mixtures: a patchy particle case study. Journal of Chemical Physics, 138(16):164904, 2013. doi:10.1063/1.4802026.
    [abstract▼] [BibTeX▼]
  • S. Kantorovich, A.O. Ivanov, L. Rovigatti, J.M. Tavares, and F. Sciortino. Nonmonotonic magnetic susceptibility of dipolar hard-spheres at low temperature and density. Physical Review Letters, 110(14):148306, 2013. doi:10.1103/PhysRevLett.110.148306.
    [abstract▼] [BibTeX▼]

2012

  • P. Šulc, F. Romano, T.E. Ouldridge, L. Rovigatti, J.P.K. Doye, and A.A. Louis. Sequence-dependent thermodynamics of a coarse-grained dna model. Journal of Chemical Physics, 137(13):135101, 2012. doi:10.1063/1.4754132.
    [abstract▼] [BibTeX▼]
  • C. De Michele, L. Rovigatti, T. Bellini, and F. Sciortino. Self-assembly of short dna duplexes: from a coarse-grained model to experiments through a theoretical link. Soft Matter, 8(32):8388–8398, 2012. doi:10.1039/c2sm25845e.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, J. Russo, and F. Sciortino. Structural properties of the dipolar hard-sphere fluid at low temperatures and densities. Soft Matter, 8(23):6310–6319, 2012. doi:10.1039/c2sm25192b.
    [abstract▼] [BibTeX▼]
  • J.M. Tavares, L. Rovigatti, and F. Sciortino. Quantitative description of the self-assembly of patchy particles into chains and rings. Journal of Chemical Physics, 137(4):044901, 2012. doi:10.1063/1.4737930.
    [abstract▼] [BibTeX▼]

2011

  • L. Rovigatti and F. Sciortino. Self and collective correlation functions in a gel of tetrahedral patchy particles. Molecular Physics, 109(23-24):2889–2896, 2011. doi:10.1080/00268976.2011.609148.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, J. Russo, and F. Sciortino. No evidence of gas-liquid coexistence in dipolar hard spheres. Physical Review Letters, 107(23):237801, 2011. doi:10.1103/PhysRevLett.107.237801.
    [abstract▼] [BibTeX▼]
  • L. Rovigatti, W. Kob, and F. Sciortino. The vibrational density of states of a disordered gel model. Journal of Chemical Physics, 135(10):104502, 2011. doi:10.1063/1.3626869.
    [abstract▼] [BibTeX▼]